
UNIX Application Migration Guide

Chapter 7: Creating the Development Environment

Larry Twork, Larry Mead, Bill Howison, JD Hicks, Lew Brodnax, Jim McMicking, Raju Sakthivel,
David Holder, Jon Collins, Bill Loeffler
Microsoft Corporation

October 2002

Applies to:
 Microsoft® Windows®

UNIX applications
 Microsoft® Visual Studio®

The patterns & practices team has decided to archive this content to allow us to streamline our latest
content offerings on our main site and keep it focused on the newest, most relevant content. However,
we will continue to make this content available because it is still of interest to some of our users.
We offer this content as-is, without warranty that it is still technically accurate as some of the material is
undoubtedly outdated. Note that the content may contain URLs that were valid when originally
published, but now link to sites or pages that no longer exist.

Summary: Chapter 7: Creating the Development Environment discusses the various tools and
development environments available for your migration strategy. The installation and configuration of
Microsoft Visual Studio and Services for UNIX are covered as the core development environments as
well as additional add-on capabilities. (62 printed pages)

Contents

Introduction
Development Environment Overview
Configuring the Development Environment
Populating the Development Environment
Using the Development Environment
Building and Debugging with Interix
Building and Debugging with Visual Studio
Automation Script for Visual Studio

Introduction

UNIX Code Migration Guide

Page 1 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

This chapter describes how to create a development environment for application migration. First, it
describes some of the tools and facilities that are available. Then, in the three main sections, it describes
how to:

l Configure the development environment.
l Populate with source code and build structures.
l Use the development environment.

The decisions made while setting migration strategy will help to define the development environment.
This environment is either native Microsoft® Win32® application programming interface or Microsoft
Interix.

Solutions in this chapter use the Microsoft Visual Studio® development system for Win32 source
editing, for builds, and for makefile-based batch builds. Solutions use Microsoft Visual SourceSafe®
version control software for source control. Interix solutions use the Microsoft Visual Studio for source
editing, and the included Interix SDK tools for compiling, linking, and debugging (gcc and gdb).

Development Environment Overview

The development environment comprises all of the hardware and software that enables migration from
UNIX to the Microsoft Windows® operating system, including:

l Software development kits (SDKs), which include compilers, editors, and debuggers, provide the
basis for creating, building, and debugging the application.

l Integrated development environments (IDEs), such as Visual Studio, provide uniform and
coherent access to tools otherwise provided by the SDK.

l Software management tools, such as software for source code management and problem tracking,
are not critical but they add significant value to larger migration projects.

l Analysis tools, such as performance analysis and testing tools, can be used to improve the
performance of the application.

l Cross-platform tools and libraries, including third-party packages such as Rogue Wave SourcePro,
can be integrated with the application.

These facilities are appropriate to either the developers or the testers of the system, as shown in Figure 1.

Page 2 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 1. The development environment

Visual Studio is a comprehensive and powerful tool for developers. It includes features such as
interactive IntelliSense for editing source, edit and continue debugging, integration with Visual
SourceSafe for source control, and an extensive set of user customizations and help. These features can
make Visual Studio seem overpowering, especially to UNIX developers who are comfortable with
command-line utilities and with editors such as vi. However, Visual Studio also offers a set of short cuts
and automation macros to streamline editing sessions.

The best way to overcome apprehension about the size and feature set of Visual Studio is to start using
it. Developers will soon see how easy Visual Studio is to use, and how features that once seemed
overwhelming can lead to greater productivity. Experienced developers will soon have the Visual Studio
IDE customized to meet their needs and to eliminate any unneeded features.

Windows Platform SDK

An SDK contains tools to help build, debug, test, and deliver applications. It also contains all the
definitions (include files) and libraries needed to compile programs. In general SDK tools are run from
the command line, just like applications are run from a shell prompt in UNIX. Output from SDK tools
can be files created on the disk, text output to the console (like stdout in UNIX), or graphical output to
one or more dialogs.

The Microsoft Platform SDK is a set of tools and API definitions to help create applications for the
Windows platform. It contains include files and documentation for all subsystems and APIs in
Windows. It also contains definitions and documentation for the Microsoft Windows Server 2003
family, including Microsoft BizTalk® Server, Microsoft Commerce Server and Microsoft SQL Server.
Installation of the Windows Server 2003 components is optional.

Page 3 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The Platform SDK is available on CD or as a free download on the Web. It is also available with the
Microsoft Visual C++® development system and Visual Studio, or with an MSDN Professional or
Universal subscription. To order or download the SDK, go to the Platform SDK Update site.

Application build tools

The Windows Platform SDK contains tools in several categories to help build applications, including:

l Cryptography, to create and manage certificates
l Microsoft DirectX® application programming interface to manage 3-D models, graphs, and

DirectX devices
l Messaging API (MAPI), for message, address book, and other viewers
l The Multimedia for AVI editor
l OLE DB, for OLE object and file viewers and the MIDL compiler
l Resource files for image editor and resource compiler
l Telephony API (TAPI), for TAPI browsers
l Text Files tools, for identifying file differences
l Windows Sockets, for service provider ordering

Most migration projects rely heavily on the Text Files tools. WinDiff, for example, is a graphical tool for
comparing files and directories, recursively if desired. Files with differences can be viewed with the
different lines highlighted in colors for easy examination. Another useful tool is Where, which finds a
file by name or pattern in a directory or subdirectories.

The Platform SDK also contains the Windows Script Technologies, which include JScript® and
Microsoft Visual Basic®, Scripting Edition (VBScript) engines. JScript is the Windows implementation
of ECMAScript or JavaScript. VBScript is based on Visual Basic. Both the JScript and VBScript
engines run in the context of the Windows Script Host, which is a language-independent environment
for scripting engines. Windows Script Host allows scripts to be run from the command line or from the
Windows environment. Scripts can run in batch mode and do not require user input. Scripts can also use
the objects provided by Windows Script Host to access operating system resources, such as files.

Debugging tools

The symbolic debuggers in the Platform SDK can set breakpoints, execute the program or step through
it one line at a time, and examine memory and registers. The debuggers understand the debugging
information in the application, and can display the source with the executing program.

The symbolic debuggers are:

l NTSD for debugging user mode programs
l KD for kernel debugging
l WinDBG for debugging Windows-based programs, services, and kernel-mode drivers

The Platform SDK also contains Spy and Viewer programs that debug Windows objects:

l The Spy program (Spy.exe) helps to monitor messages sent to one or more windows and to
examine the values of message parameters.

l The Object Viewer (Winobj.exe) examines all of the objects in the running system, such as kernel
objects and file systems, as well as user-viewable properties of objects.

Page 4 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Performance monitoring and tuning tools

Some tools that help improve the performance of applications are included with both the Platform SDK
and Visual Studio. This section discusses only these Platform SDK command-line tools:

l Call Attributed Profiler (CAP)
l Performance meter (Perfmtr)
l Pstat
l VADump
l Working Set Tuner (WST)

(For information on Windows-based tools included with both the SDK and Visual Studio, see
"Performance Tuning" under "Integrated Development Environments.")

Call Attributed Profiler (CAP), a normal function call profiler, runs from the command line. CAP is
similar to the UNIX prof profiler. CAP can show how much time is spent in each function and in other
functions it calls.

To control the granularity of profiling, specify which DLLs and functions to include. CAP produces a
call tree of all the functions called in the module being profiled, together with the time spent in each.

CAP supports the following measurement techniques:

l Measuring calls from an executable file (.exe)
l Measuring calls from a DLL
l Measuring calls from an .exe file to all of its DLLs
l Measuring calls from a DLL to all of its DLLs
l Any combination of the above

The Perfmtr (performance meter) command-line utility dynamically displays system performance
information. The information is updated every 2-3 seconds. Perfmtr starts by displaying CPU usage
data. However, single-letter keyboard commands prompt it to display performance information such as
those shown in Table 1.

Table 1. Perfmtr keyboard commands

Pstat displays process statistics as text. Command-line options instruct Pstat to display all statistics for

Key Displays
C CPU usage
V Virtual memory usage
F File cache usage
R Cache Manager read and write operations
P Pool usage
I I/O usage
X X86 VDM statistics
S Server statistics
H Repeats the current information type
Q Quit the utility

Page 5 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

all processes, for user-mode processes, or for kernel-mode processes. (If Pstat gets statistics for all
processes, output will be at least several hundred lines.)

VADump examines the virtual address of a running process. Depending on the options specified, the
output of VADump can include:

l Each address, along with its size, state, protection, and type
l Total committed memory for the executable
l Total committed memory for each DLL
l Total mapped committed memory
l Total private committed memory
l Total reserved memory
l Information about working set
l Information about paged and non-paged pool usage

Note Because VADump can generate a very large amount of output, it is advisable to
redirect the output to a file.

The Working Set Tuner (WST) reduces the memory a program uses. WST can help a program coexist
efficiently with other programs and can help reduce the time it takes to load an application.

The working set of a program consists of those pages from the virtual address space that are mapped into
active physical memory for the process. It includes both private data and shared data (program code
including executable files, DLLs, and system DLLs.)

Integrated Development Environments

Unlike the SDK command-line tools, integrated development environments offer the user an integrated
set of tools such as editors, compilers, and debuggers. Microsoft Visual Studio, the IDE discussed here,
comes with a choice of languages such as C/C++ and Visual Basic, compilers and debuggers, and a
large set of integrated tools that do everything from create resources to package applications for
installation.

This chapter uses Visual Studio 6.0 as the basis for features and examples. The newest version of Visual
Studio is Visual Studio .NET. This version includes the new features of the Microsoft .NET Framework
and the common language runtime. Visual Studio .NET is covered in greater detail in Chapter 15.

This section discusses the Visual Studio features that provide compiling and linking, debugging, and
performance tuning. It also includes a section that discusses third-party extensions to Visual Studio.

Compiling and linking

Visual Studio provides a state-of-the-art C/C++ optimizing compiler and preprocessor. Users can
specify options to the compiler by using the GUI dialog boxes, or from the command line when using an
external make procedure. As in UNIX, link options to the compiler are passed on to the linker.

Options to the compiler can include:

l Optimization options turn optimizations on or off.
l Code generation options identify capabilities, such as structured exception handling (SEH) model

Page 6 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

and processor.
l Output Files options identify names of output files, such as executable files and output files for

debugging information.
l Debugging options set preferences for debugging information output.
l Preprocessor options set, for example, location of files and defined constants.
l Language options enable or disable language extensions.
l Linking options include DLL output, threading model, and others.
l Precompiled header options set compilation speed.
l Miscellaneous options include Help, compile without linking, and others.

Debugging

Each built-in Visual Studio debugger for C/C++ and Visual Basic has its own window in the Visual
Studio IDE. Many of these windows can be docked, that is, attached to a side of the main IDE window,
or they may float over the IDE window.

Performance tuning

Visual Studio includes tools for analyzing the performance of applications, including:

l Pview
l Profiler
l Spy++

The PView process viewer uses dialog boxes to view and modify running processes and their threads.

PView can monitor:

l Memory usage of a process, of threads, and of individual DLLs
l CPU time used by processes and threads
l How an application or the system runs with different system priorities

Note PView features provide powerful tools for a developer to monitor an application's
processes and threads at different priorities. Changing priorities may also affect other
applications running on the same system. Developers need to take this into account when
using PView.

Profiler helps to analyze program execution either at the function level or at the level of individual lines
of source code. Profiler can help determine which parts of code take a long time to execute and which
parts are executed many times.

Profiler can be used:

l To count how many times a function is called. If the test data shows that a function is called too
many or too few times, the application code could be in error.

l To determine the amount of time used by a function. If a function takes too long to execute,
inefficient algorithms could be to blame.

l To determine coverage of testing procedures by verifying that all functions are called or that they
are called the correct number of times.

Page 7 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Spy++ (Spyxx.exe) shows a graphical view of the system's processes, threads, windows, and window
messages. Spy++ has a toolbar, hyperlinks for fast navigation, a Window Finder tool for easily selecting
a window, and a font dialog box for customizing view windows. Spy++ also saves and restores user
preferences.

Third-party extensions to Visual Studio

Third-party tools that integrate with Microsoft Visual Studio to enable detection of run-time errors
include BoundsChecker from Compuware and PurifyPlus from Rational Software.

BoundsChecker, a run-time error detection tool, was originally a single product. It is now part of the
DevPartner Studio suite, which contains performance as well as debugging tools.

BoundsChecker can diagnose programming problems unique to C++, such as stack and heap memory
errors and leaks of memory and resources. BoundsChecker also eliminates common Windows
mismatched argument problems by checking API calls for Win32, ODBC, and Internet, among others.

PurifyPlus contains the Purify error and memory problem detection tool in addition to performance tools
to analyze bottlenecks and to detect untested code. PurifyPlus also checks for errors in API calls,
including Win32, ActiveX® controls, COM objects, and DLLs. PurifyPlus detects C++ memory
problems such as heap and stack errors, pointer errors, memory usage errors, and handle errors.
PurifyPlus also works outside the Visual Studio IDE for stand-alone debugging.

MKS Software offers an extension to Visual Studio 6.0 to support the UNIX lex and yacc utilities. The
lex utility is a scanning utility that analyzes input text files for the occurrence of pre-defined text
patterns. When the text pattern is found, a set of C source code is run. The lex utility reads its input from
a specified input file, or from standard in. The input is in the form of pairs, with the text expression to
scan for first, followed by the C code to execute when the text expression is found. The lex utility
produces a C source file that is compiled to create the scanning program.

The yacc (yet another compiler compiler) utility is a parser that takes a setup input token and applies a
set of grammar rules to the token. The yacc utility generates a C program based on the input of grammar
rules from an input file or from standard in. The C program parses an input based on the grammar rules
supplied when yacc was run.

The combination of lex and yacc provide developers with a powerful method for generating compilers,
front-end processors for compilers, text processors and language translators. The lex utility performs the
function of creating token based on regular expressions; yacc perform grammar rules on the tokens.

The MKS lex and yacc utilities work as add-ins to Visual Studio 6.0 that allow developers to create
scanners and parsers within the Visual Studio 6.0 IDE. These help automate the time-consuming and
monotonous tasks of lexical analysis and grammar matching from within Visual Studio 6.0.

Source Code Management Tools

Source code management tools can be integrated into the Visual Studio IDE to perform automatic
checkout when a developer modifies a file. Source code management tools that integrate with Visual
Studio have point-and-click interfaces, which may be new to UNIX developers.

Visual SourceSafe, the source management tool included with the Visual Studio IDE, creates projects in

Page 8 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

a tree view structure. Visual SourceSafe provides full source control for check in, check out, and
difference tracking. Visual SourceSafe uses COM Automation for customization.

The Automation model can help automate the migration of source from UNIX to Windows by
automating repetitive tasks. For example, in a batch build process the Automation features of Visual
SourceSafe can be used to get the source code automatically before it is compiled.

Visual SourceSafe, like other source code control systems, maintains a library of projects from which
users check out files for exclusive or nonexclusive access. After modification and testing, users check in
the files. If nonexclusive checkout is allowed, the files are merged at check-in time, interactively if
necessary. Each incremental checked-in version can be recalled if functionality is inadvertently deleted.
VSS can also create releases by labeling the files.

Visual SourceSafe handles text as well as binary files.

Packaging Tools

Once an application is created, the developer needs a way to effectively distribute the application to the
target users. This needs to be done in a reliable and repeatable manner. The Microsoft Installer (MSI)
technology provides this capability.

MSI allows the developer to generate an installation package that organizes an application's setup into a
set of features that can be installed through the command line, or through the Control Panel, by using the
Add or Remove Programs options. In addition to installation, MSI provides uninstall functionality,
automatic application repair, and installation with elevated privileges.

MSI creates installation packages through a set of programming APIs and a package installation
database. A developer can work with MSI by using the API directory. However, a tool that generates
MSI scripts can help automate the process. The Microsoft Platform SDK provides such a tool—
Orca.exe. Orca allows the developer to directly edit the content of the MSI database. Detailed
information about Orca can be found on the Platform SDK Online Help or the Microsoft MSDN Web
site Platform SDK: Windows Installer pages.

Third parties such as Wise Solutions and InstallShield provide products that further automate the
creation of MSI installation packages. These tools have options that allow a developer to create a
"before" snapshot of a target system. Then the developer can manually install the package. Now the
developer can take an "after" snapshot of the system. The difference becomes the MSI package.

For more detailed information on MSI please visit the Microsoft TechNet Web site. The current page
with MSI content as of creation of this guide is Using Windows Installer.

Cross-Platform Packages and Libraries

Every migration of an application from UNIX to Windows requires some interoperability between the
UNIX development environment and the Windows development environment.

A rewrite to Win32 requires the least interoperation between the two environments. In this case, the
code simply moves to a native Windows environment, with no further need for the UNIX development
environment. At the other end of the scale, when a ported application requires ongoing cross-platform
development, UNIX and Windows development environments must be well integrated.

Page 9 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Third-party cross-platform environments or libraries are popular solutions for maintaining code on
multiple versions of UNIX and Windows operating systems. Because a layer of abstraction isolates the
differences in the platforms in this case, users can develop applications without as much attention to
operating system-specific code.

A given third-party library or toolset may not provide complete coverage for all aspects of program
design. For example, one library could be designed to create an abstraction for operating system
functionality such as processes and threads. Another library could address graphical user interface
functionality.

For this reason, the functionality applications need is a major factor in choosing a vendor. The level of
the interoperability required between the UNIX and Windows environments influences vendor choice.
For more information on interoperability, see Chapter 6, UNIX and Windows Interoperability.

Interix

Interix is a multiuser UNIX environment that operates on computers running Windows. The Interix
subsystem and its accompanying utilities provide an environment that resembles any other UNIX
system. It includes case-sensitive file names, job control, compilation tools, and the use of more than
300 UNIX commands, utilities, and shell scripts. Because the Interix subsystem is layered on top of the
Windows kernel, it offers true UNIX functionality without any emulation. (For more information about
Interix, see Chapter 4, "Assessment and Analysis.")

This section discusses Interix APIs, Interix utilities, and Interix networking and security issues.

Interix APIs

Interix includes a Software Development Kit (the Interix SDK) that provides a full set of APIs (more
than 1900) plus header and library files for creating and migrating UNIX applications.

The Interix SDK includes documentation and header files for the following categories of APIs and
services:

l POSIX.1 APIs
l Cryptography
l User interface services, including curses and terminal routines and X-Windows
l Database (dbm)
l Remote procedure calls (RPCs)
l Sockets
l Memory-mapped files
l System V interprocess communication (IPC) mechanisms
l Berkeley Software Distribution (BSD) string and memory functions
l Pseudo terminals
l Controlling terminals
l Security
l Setup and system administration
l Tools and scripting

Interix utilities

Page 10 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The Interix environment includes both the Korn and C shells and provides more than 300 UNIX utilities.
In addition, Interix includes the usual UNIX developments tools, such as text editors, make utilities,
compilers, linkers, debuggers, and shell scripts.

Table 2 shows some widely used development tools included with Interix.

Table 2. UNIX-like development tools included with Interix

Category Tools
Text editors and processors Text editors: ex, vi, view

File-pattern searchers: grep, egrep, fgrep
Stream editor: sed

Archives, compression, and source
management tools

To create and maintain library archives: ar
To display file or directory differences: diff, sdiff
To compress or expand files: gzip, gunzip, uncompress,
zcat
To create new revision control system (RCS) files or to
change attributes of existing files: rcs
To create archive files: tar

Configuration, management and build
process tools

To translate Awk to Perl: a2p
Pattern-directed scanning and processing language:
awk/gawk
C preprocessor interface to the make utility: imake
Fast lexical analyzer generator: lex
To maintain program dependencies (Berkeley make):
make
To create dependencies in makefiles: makedepend
Practical Extraction and Report Language (Perl): perl
For pipe fitting; to duplicate standard input and help when
recording and watching the build process at the same
time: tee
To construct argument list(s) and execute: xargs
To call imake with appropriate configuration file: xmkmf
LALR parser generator: yacc

Compilers, linkers Portable GNU (not UNIX) assembler: as
Compiler interface: c89, cc (The c89 utility is an interface
to the Microsoft Visual C/C++ compiler.)
GNU project C and C++ Compiler: gcc, g++
GNU project Fortran Compiler (v0.5.21): g77
GNU assembler macro preprocessor: gasp
GNU linker: ld

Debuggers and debugging assistance GNU debugger: gdb
ASCII, decimal, hexadecimal, octal dump: hexdump
To display information from object files: objdump
To list symbolic names stored in an object file: nm
To trace system calls and signals: truss
To display or set process limits: ulimit
To print contents of X-Windows events: xev

Miscellaneous tools To run a Win32 command (such as during migration of
scripts): runwin32

Page 11 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

In addition, the Interix /usr/contrib/win32/bin directory includes shell script wrappers for common
Windows command-line utilities, such as net, calc, cacls, and netstat. Because this directory is
automatically placed in the PATH variable when an Interix shell starts, these Windows utilities can be
executed by typing the command name at the shell prompt. For example, to run the Windows calculator
in the Korn shell, type calc at the dollar sign ($) prompt. To look for Windows commands in other
directories, set the PATH_WINDOWS variable in the startup files.

Interix networking and security

This section covers some of the networking and security differences between UNIX and Interix. In
particular it covers:

l Mapping network drives
l Network resource security
l User name differences
l Daemons and services

The /net virtual directory is similar to the Windows Universal Naming Convention (UNC). For example,
the file referred to as \\Saturn\marketing\report.xls using Windows UNC can be referred to
as /net/Saturn/marketing/report.xls using Interix.

To make resource ownership information consistent across computers, Interix uses User Name Mapping
(when available) to associate Windows users with user identifiers (UIDs) and group identifiers (GIDs).
If there is no User Name Mapping server available, the Interix subsystem computes a UID or GID as it
encounters each Windows user or group. This computed value is normally unique, and all hosts in the
same domain compute the same UID or GID for the user or group. If Interix cannot compute a unique
UID or GID for the user or group, it makes a log entry in the Windows-based application's event log. If
Interix can no longer communicate with a User Name Mapping server, the Interix subsystem reverts
from mapped UIDs and GIDs to computed UIDs and GIDs.

The Interix subsystem principal domain is designed to reduce the length of the displayed user and group
names. The principal domain is separate from the system's primary domain. The primary domain for a
system is the domain to which the system is joined; that is, the domain displayed in System Properties.
The Interix principal domain is set by default to the system primary domain, but that can be altered. For
example, when the primary domain for the system is WESTCORP and users are also in the
WESTCORP domain, the Interix principal domain is WESTCORP by default. A who command
displays a user named Carl in the WESTCORP domain as "Carl." A user from another domain, such as
Susannah in EASTCORP, is displayed as EASTCORP+Susannah.

UNIX system services are handled by server programs called daemons. Windows server-level programs
are called services. Unlike a daemon, a service logs on to the computer by using a user account. This
gives the Windows administrator greater control over the privileges granted to the service and, when the
service logs on with a domain account, even allows the service to access network resources.

Interix can take advantage of both Windows and UNIX mechanisms to provide services such as inetd
(the UNIX super server for Internet services). By default, Interix runs such services as traditional UNIX

Terminal emulator for X-Windows (requires third-party
X-Windows server): xterm
UNIX to Windows text formatting converter: flip

Page 12 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

daemons, using the init utility to start and stop these daemons. Similar to a traditional UNIX system,
Interix runs init as part of its startup procedure. When it starts, init executes scripts referenced by
symbolic links located in /etc/rc2.d. Then, init continues to run until it receives a termination signal, at
which point it runs shutdown scripts for the daemons it started.

Rogue Wave SourcePro

Rogue Wave SourcePro consists of a set of libraries that enable cross-platform compatibility of
applications between UNIX and Windows. Its C++ components handle many of the intricacies of the
C++ language and provide high-level object-oriented interfaces to complex underlying APIs. With
minimal code changes, applications built by using SourcePro Core run on multiple operating systems,
including Windows, and Linux and other popular UNIX operating systems.

Rogue Wave SourcePro consists of libraries for core functionality and for database and networking
support.

SourcePro core

The Rogue Wave SourcePro core library consists of five modules:

l The Standard C++ Library Module is a complete implementation of the ISO/ANSI Standard for
the C++ Programming Language. Sun, Hewlett-Packard, and Compaq ship Rogue Wave's
implementation of the ANSI Standard C++ Library with their C++ compilers.

l The Essential Tools Module offers an internationalized set of fundamental C++ components that
are useful in almost any type of C++ application. They provide user interfaces to the underlying
ANSI Standard C++ Library and features beyond those in the ANSI standard, including classes
for handling dates and times. Developers can use this module to write a single C++ application
that can ship to any country.

l The Advanced Tools Module offers a mechanism for complex stream transformations and object
serializations, which can stream C++ classes with minimal code changes.

l The XML Streams Module builds on the Advanced Tools Module, enabling C++ data to be
written to or read from an XML stream. Because instances of C++ classes can be turned into XML
without writing XML streaming code, developers can integrate existing C++ code into systems
that use XML to communicate.

l The Threads Module provides a higher level, object-oriented API that hides many of the
complexities of multithreading in C++; that is, developers are insulated from dealing with the
native C threading library implementations. The Threads Module classes handle fundamental
tasks such as creating, manipulating, synchronizing, and deleting threads. Advanced threading
functionality includes server pools and producer/consumer queues.

SourcePro networking, web, and security

Developers can create secure or nonsecure networked and Internet-enabled applications by using Rogue
Wave SourcePro Net to handle the details of socket programming and Internet protocols. In SourcePro
Net, developers can implement standard Simple Object Access Protocol (SOAP) concepts using their
existing C++ knowledge and XML. Because SourcePro Net has a layered architecture, developers can
choose the level of abstraction for an application, such as the abstract layer for ease of use, or the
protocol layer for finer control of details.

SourcePro Net includes four modules:

Page 13 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l The Essential Networking Module includes a high-level API for networking applications (it
encapsulates the details of socket programming).

l The Internet Protocols Module provides an API for developing Internet-enabled client-side
applications (it encapsulates the details of key Internet protocols).

l The Secure Communication Module provides an API for developing secure networked and
Internet-enabled applications (it encapsulates the details of the low-level HTTPS protocol). This
module also offers a high-level C++ API to Secure Socket Layer/Transport Layer Security
[SSL/TLS] implementations, including RSA's commercial product BSAFE SSL-C and the open
source alternative OpenSSL.

l The Web Services Module encapsulates the current SOAP specifications, including SOAP 1. 2,
SOAP with attachments, and XML Schema 2001. By using the Web Services Module, developers
can convert SOAP objects to and from strings, enabling the objects to work with any networking
or deployment technology.

SourcePro database support

Rogue Wave SourcePro DB provides relational database access in C++. The SourcePro DB object-
oriented interface abstracts the complexity of writing database applications, but still allows access to the
native database client libraries when needed. SourcePro DB encapsulates the ANSI SQL 92 standard
and supplies a consistent, high-level C++ interface to relational databases. Its layered architecture
comprises a database-independent interface module and a variety of database-specific access modules,
including Oracle, Oracle 8, Sybase, DB2, Informix and Microsoft SQL Server, as well as general access
by using ODBC. The object-oriented encapsulation of relational database concepts eliminates the need
to generate SQL programmatically.

The OpenSQL API helps to improve performance on a specific database by providing lower-level access
that uses a statement-based architecture. This allows the creation of SQL, binds the variables to the
statement, and executes the statement. By using SourcePro DB, developers can also get direct access to
native structures and functions and make database-specific implementation choices.

Cross-platform GUI tools

By using cross-platform graphical user interface (GUI) tools, developers can write applications with an
API consistent with both UNIX and Windows. The cross-platform tools usually create an abstraction
through which the application can use the X-Windows system on UNIX and the Windows API on the
Microsoft platform.

Some cross-platform GUI tools come from an independent software vendor (ISV) and others are open
source. Even some open source versions come from a vendor with a support option. Examples of these
cross-platform tools are the Carnac 2D graphics toolkit from INT, Inc., and the Qt toolkit from
Trolltech.

INT Carnac

Carnac, a cross-platform interactive display system, is a C++ library available on several UNIX systems
as well as on the Windows NT® and Windows 2000 operating systems.

Carnac is designed to handle applications that have high-end graphics requirements. For optimum
performance, Carnac drives the native graphics pipeline of the target system.

Page 14 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Carnac supports the following features in prototypes or applications:

l Applications written in C++
l Thread-safe library
l Hard copy produced by PostScript
l Computer Graphics Metafile (CGM) (optional)
l Web browser support (optional)
l Visual properties that can be set on shapes depending on target device
l View layering (data can be categorized)
l Advanced scaling, rotation, selection, and shape modification
l Ability to persist pictures as binary or ASCII

For further information, see the INT Web site.

Trolltech Qt

The Trolltech Qt toolkit, a C++ cross-platform library available on several Windows-based and UNIX
systems, provides platform-independent toolsets. Because of this, developers can use it to write
applications to a single API with a single source code base. Qt is maintained by Trolltech, which
delivers both a free, open-source version and full-featured versions suitable for creating commercial
software.

Qt application development functionality, implemented as C++ classes, covers GUI, database,
networking, and file handling. Classes and libraries used for database and file handling (and others) are
separate from and are not required for using the GUI classes, where the Qt toolkit focuses its
functionality.

Qt does not implement GUI by wrapping the native windowing capabilities. Instead, it creates its own
abstraction layer, which means the toolkit can change look-and-feel characteristics between Windows,
Motif, and other customizable schemes, depending on whether the application runs on a Windows or
Motif system.

Qt also supports advanced graphics requirements that use the OpenGL extensions. Applications
developed using Qt widgets can use OpenGL functionality.

For more information, see the Trolltech Web site.

UNIX emulation systems

Another approach to creating system architecture that runs UNIX programs on Windows operating
systems is to create UNIX emulation by using Win32. Such a program runs as a Win32-based
application or service that accepts commands from the user through a command window. Because these
systems are emulations and not native Windows subsystems, performance of migrated UNIX
applications could suffer and some UNIX functionality may not work in exactly the same way as it does
on UNIX. In contrast, because Interix is implemented as an environment subsystem, it can deliver the
exact behavior of a UNIX system.

UNIX emulation systems for Windows include:

l Cygwin, which was developed by Cygnus Solutions and later Red Hat, features a port of the GNU

Page 15 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

development tools and utilities. Cygwin offers a UNIX-like development environment running on
Windows. Cygwin does not implement a single, complete UNIX environment. Instead, it
combines the features of several UNIX versions and Linux.

l NuTCRACKER, which is part of the MKS Toolkit, features both the C and Korn shells. This
makes many UNIX developers feel at home. MKS delivers most of the UNIX 98 APIs plus
features from specific UNIX versions and POSIX, such as threads. There is also a complete X-
Windows system including a server.

l U/WIN (UNIX for Windows), which was developed by David Korn, can be downloaded free from
the AT&T Research Web site for educational and research purposes. Commercial users must have
a license. U/WIN uses the Korn shell. U/WIN provides support for most UNIX features including
signals, UCB-style sockets, and devices.

Configuring the Development Environment

Before source code begins migrating, a decision about the target build environment needs to be made.
This decision should have been a part of the business case for the migration project because each choice
has cost and benefit implications. This section considers Interix and Microsoft Visual Studio as target
build environments.

Installation of each set of tools requires a suitably sized and configured Windows-based infrastructure.
This includes hardware and software for the development servers and for the developer's desktop
machines. For more information about implementing a Windows network or about procuring and
installing tool software, see your Microsoft Windows documentation or third-party tools documentation.

Configuring Interix

After Interix is installed, it needs to be configured. Administrators probably want to add directories to
the PATH variable in startup files. An administrator may want PATH to point to, say, programs and
shell scripts in a directory called bin under the home directory. For examples of how to modify PATH,
under /etc, see the files profile, profile.lcl, and profile.usr.

To manage the logon environment, create login scripts in the home directory. The Korn shell uses the
login script .profile. Interix provides the /etc/profile.usr file as a template for creating .profile. To use the
Interix template, copy /etc/profile.usr to the home directory and rename it .profile. Then edit .profile to
set the initial environment to the desired requirements. To customize the environment in the C shell,
create the files $HOME/.cshrc, $HOME/.history, $HOME/.login, and $HOME/.cshdirs. The C shell
runs all of these files when a user logs on.

Interix maps the root directory (/) to the Windows Services for UNIX installation directory, which is
C:\SFU by default. Under the Interix root directory are the subdirectories that usually exist in UNIX,
such as /usr and /etc. There are also virtual directories, such as /net for network resources and /dev for
devices. In addition to entries for the usual devices, the /dev directory includes entries that correspond to
Windows drive letters. For example, /dev/fs/A and /dev/fs/C correspond to drives A: and C:
respectively.

By default, Interix stores system binaries in one of three directories: /bin, /usr/contrib,
or /usr/contrib/bin. It stores the X11 binaries in /usr/X11R5/bin and the Win32 binaries
in /usr/contrib/win32/bin. Some symbolic links are added, for example, so that /usr/bin maps to /bin.
Because of this, the file system tree's configuration supports most UNIX application and script ports to
the Interix environment.

Page 16 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The creation and management of a development project in Interix proceeds just as in any UNIX
environment. First, identify the location and format of the application to be prototyped (ported), and then
determine its format (such as compressed tar file). Decide the location to which to load the source tree
(and of course verify that there is enough disk space). Be sure that the development platform has the
tools required for this application and for any other applications that will be ported to or developed in
the Interix environment.

For more information about the installation and configuration of Interix with Visual Studio, see the
following sections.

Configuring Microsoft Visual Studio

Because of the way the Interix references the Visual C++ compiler, the first issue to consider if both are
to be installed is which to install first. The following factors need to be considered:

l If Visual C++ is installed before Interix, it configures the Interix SDK to work with the Visual
C++ compiler. That is, the c89 compiler interface utility is set up automatically as the interface to
the Microsoft Visual C/C++ compiler. (The c89 utility can also be invoked as cc.)

l If Visual C++ is installed after Interix, the administrator specifies the location of the Visual C++
compiler and linker to the cc and c89 utilities. The information supplied by using the Windows
System Properties dialog box creates a Windows system variable named
INTERIX_COMPILERDIR and sets its value, in POSIX format, to the path of the directory where
Visual C++ is installed. For example, if Visual C++ is installed in directory C:\MSDEV, the value
of INTERIX_COMPILERDIR is /dev/fs/C/MSDEV. If the path contains spaces, the 8.3-format
version of the path must be used.

The default installation location for Microsoft Visual C++ is the Program Files directory, whose name
includes a space. Many utilities, such as makedepend, have trouble reading directory names that
contain spaces. If the installation directory name includes spaces, the PATH value has spaces. To avoid
these issues, add double quotation marks (") in the PATH variable around paths that contain spaces.

For example, change

/dev/fs/C/Program Files/Microsoft Visual Studio/VC98/Bin

to

"/dev/fs/C/Program Files/Microsoft Visual Studio/VC98/Bin"

If cc or c89 still cannot find the compiler, try using the 8.3-format version of the directory name. For
example, the 8.3-format name for Program Files is PROGRA~1. Make the same change to the value of
the environment variable INTERIX_COMPILERDIR, whose value is the directory in which Visual C++
was installed.

Creating a project in Visual Studio

The creation and management of projects in Visual Studio needs to take into account the sources to be
migrated from UNIX to Windows. Applications come in all sizes. To migrate the sources for a small to
medium-sized application to the Visual Studio development, simply create the projects manually. Larger
projects and their associated batch builds could require additional attention.

Page 17 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

In Visual Studio, projects can be created by using the project wizards, by manually creating blank
projects, or by using the Visual Studio Automation interface. Which method to use depends on how the
source will migrate from UNIX.

Creation of a Visual Studio project by any of these methods must follow the following three steps:

1. Decide the project type. For example, is it a Win32 project or a Custom C project?
2. Determine which third-party libraries are necessary.
3. Define the project settings for the application.

The decision matrix shown in Table 3 shows how to use criteria to create an example Visual Studio
project. This example shows considerations for two applications: one is an X-Windows OpenGL
package; the other is a stand-alone console application.

Table 3. Application decision matrix

Populating the Development Environment

One problem to solve early is how to transfer files from one system to the other. A UNIX-to-Windows
migration requires a plan for moving UNIX code to a Windows-based computer. To keep parallel
versions of the software running on both platforms, it could also be necessary to move modified files
back to the UNIX system from the Windows-based system.

After getting the original source from the source system—as a code hierarchy, as an export from a
source control system, or as an archive—the build process must also be created and configured. Some
testing of the build process is possible, but the "test" of whether or not the code compiles and links is
part of the port or rewrite itself.

This section discusses moving code between systems in general, then it looks at populating the Interix
and the Visual Studio environment with the source. Finally, it describes how to construct a build
environment in Visual Studio.

General Considerations

When moving source code from one platform to another, look first at the general structure and location
of the various files that need to be moved.

UNIX applications typically go in the /usr directory. Many UNIX administrators further segregate
system programs from added user programs. Commonly, user programs are added to /usr/local and
system programs go in the root, /usr.

Application type Visual Studio project
type

Third-party libraries Project settings

OpenGL Windows
application

Win32 project OpenGL libraries and
cross-platform Windows
libraries

Use precompiled headers,
compile with edit and
continue

Console C application Custom C project None Use standard C library,
not Windows defaults

Page 18 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Developers of nonsystem programs ordinarily find source code files in /usr/local on the UNIX platform.
Within this directory, common directories include:

l /usr/local/bin for executable files
l /usr/local/include for header files
l /usr/local/lib for library files

Source code for user projects is usually added in a hierarchy from a directory based in /usr/local. For
example, the source files for the myapp program, which is part of the mysystem application, are
in /usr/local/mysystem/myapp.

On UNIX, a developer's working source files are probably in a structure similar to that described for
myapp, but in the developer's home directory instead. If the developer accesses these files from net
shares by using NFS, then the files may be found in a structure such as /export/home/<user
name>/src/mysystem/myapp.

Windows uses different directory structures for project files. First, applications install their shared and
read only components to <drive letter>\Program Files. Windows uses a drive letter instead of the single-
rooted UNIX file structure. The actual drive letter used varies according to system configuration. A
directory for the primary development tools and several directories for additional systems are usually
found under C:\Program Files.

For example, if the developer needs to use development resources from the base system and an add-on
service called mysystem, the developer can expect to find the base development files in C:\Program
Files\mysystem and specific source files in C\Program Files\mysystem\myapp. Under each top-level
directory, the developer can expect to find a directory for binaries, header files, and libraries, such as:

l C:\Program Files\mysystem\bin for binaries
l C:\Program Files\mysystem\include for header files
l C:\Program Files\mysystem\lib for libraries

For the released (permanent) version of the source for myapp, look in C:\My
Programs\mysystem\myapp. Because most installation programs allow the user to customize the name
of the top-level directory, these can vary. However, the directory structure under the top-level
installation directory is probably the same.

Finally, the developer needs a space for the working myapp source files. Unlike UNIX, in Windows
these files do not go under the same directory tree as the rest of the program files. In Windows, the
project files belong in the area allocated for the developer's documents, say, "My Documents." By
default, this is C:\Documents and Settings\<user name>\My Documents. Therefore, look for the myapp
sources under C:\Documents and Settings\<user name>\My Documents\mysystem\myapp.

Note When migrating files, remember that the UNIX text file format is different from
Windows. Depending on the target environment, Windows files may need to be convert to
UNIX or vice versa. Interix provides the flip utility to do this.

For example, the following command changes a UNIX text file to a Windows text file:

% flip -m MySource.C

Page 19 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The following command converts startup files created using Windows Notepad to the UNIX
format:

% flip -u filename

The flip utility also allows the use of wildcards. The programs ksh, make, and awk (with
the -f option) can read script files in either the Interix or Windows format.

Exporting Files from the UNIX Environment

After they are placed in a working directory, the source files can be packaged together by using the tar
(Tape Archive) UNIX utility. The utility was named when it applied to packing files together on tape.
Now, this utility can create a single file that represents a number of files from a common source. , which
makes tar useful for packing together a project's files. Use the -c option with tar to create the archive,
the -r option to add files to the archive.

A file that represents the output of tar is sometime called a tar ball. After the tar ball is created, the
developer can compress it by using gz (GNU Zip).

Now the project is ready to copy to Windows. To do this, use one of the following methods:

l Use FTP (file transfer protocol) from an FTP server. (For an FTP file transfer, be sure the session
is in binary (image) transfer mode before getting the compressed archive file.)

l Use file copy from a file server such as Web, network file system (NFS), or server message block
(SMB).

l Copy from a CD-ROM drive.

A copy can start from the UNIX side or the Windows side. To copy files from one system to another, the
administrator needs to allow access to both the source and target systems from the machine issuing the
copy commands. When using NFS or CIFS, the remote share needs to be mounted.

Populating an Interix Environment

It should be as straightforward to import an application's configuration, build, and source files into the
Interix development environment as it is to move them between two UNIX systems. Applications
typically arrive as a compressed or uncompressed tar archive file. (For more information on tar, see the
discussion in "Exporting Files from the UNIX Environment.")

Because Interix integrates with the Windows environment, Interix provides a program group that can
start either a ksh or csh shell. To start one of these shells, click Start and then point to one of:

l Programs, then Windows Services for UNIX, and then korn Shell

—or—

l Programs, then Windows Services for UNIX, and then C Shell

From the C or korn shell, the import can proceed.

To import the application configuration, build and source files

Page 20 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

1. Change the working directory to /usr/examples with the cd command, and then copy the
compressed archive from the CD-ROM drive by typing:

% cd /usr/examples
% cp /dev/fs/<CD-ROM Drive Letter>/c_count.tar.gz .

(The period at the end of the last line indicates the current directory.)

2. If the archive currently exists on a network share and the network share has been mounted to a
drive letter, move it into the environment by typing:

% cp /dev/fs/<drive letter>/<source directory>/c_count.tar.gz .

3. Enter the ls list directory command:

% ls

Output from this command looks similar to this:

c_count.tar.gz win32 gawk admin rpc

4. Uncompress and extract the files from the archive by typing:

% gunzip < c_count.tar.gz | tar xf -

Output from this command looks similar to:

% ls
COPYING c_count.tar config.status descrip.mms makefile.in
readme Makefile changes config_h.in getopt.c
manifest system.h c_count.1 config.cache configure
getopt.h mkdirs.sh tags c_count.c config.h
configure.bak install.sh patchlev.h testing c_count.lsm
config.log configure.in makefile portal

After the files have been extracted from the archive, then populating the Interix environment is
complete.

Populating a Windows Environment

Using the Platform SDK or Visual Studio, populating the Windows environment is almost the same as
that described in "Populating an Interix Environment." However, the intended location of the source
files is similar to C:\My Programs\mysystem\myapp, depending on the name of the system and
application subsystem being imported.

Once the tar file or compressed tar file is in the Windows environment, it needs to be unpacked into the
local Windows project area. Use a Windows-based version of tar to do this. Systems that include tar
include Interix, MKS NutCracker, and Cygwin. A gz archive can be opened on Windows by using the
WinZip archive utility.

After the source files are unpacked, the text for the source file may need a minor conversion. In UNIX,
the line-feed character (hex 0A) is used to indicate a new line. In Windows, the combination is carriage

Page 21 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

return (hex 02) and line feed. To determine whether this conversion is needed, open a source file in
Notepad. If the source lacks the proper line feeds, then a conversion is needed. A number of utilities can
be used for this. One of them, flip, is delivered with Interix. (For more information on flip, see "General
Considerations" in this chapter.)

Migrating Source under Source Control

Source control systems impose additional requirements on moving the code. First, if the source control
system allows both UNIX and Windows clients, then creating the project environment is the main step.
In this case, after the Windows project environment is created, the source is moved by simply checking
out the source to the appropriate project area.

If the source control system does not allow both clients, however, follow these steps:

1. Check out the project source from the source control system on UNIX.
2. Package the source on UNIX.
3. Copy the source to Windows.
4. Unpack the source on Windows.
5. Check the source into source control on Windows.

The remainder of this section walks through these steps by using tools available on both UNIX and
Windows.

First, the source is checked out of the UNIX source control system into a local user's working directory
on UNIX. Most code management tools provide facilities to export an entire code hierarchy and create a
tar file directly. If this is not the case, the hierarchy must be checked out and then packaged. The steps to
package, move, and unpack the source take place in much the same way as already described in this
section.

Once moved and unpacked, the source needs to be checked into source control in the Windows
environment. From the command line, the administrator can create a project, add the files to the project,
and check the files into Visual SourceSafe by using the following commands:

ss Create $/MySystem
ss Add <working directory path>\MySource.C

—or—

ss Checkin MySource.C

The following command recursively retrieves all files associated with the MySystem project in Visual
SourceSafe.

ss Get $/MySystem -R

Migrating a Build Environment to the Windows SDK

The Platform SDK can be used to compile and link C and C++ programs without Visual Studio projects.
The nmake tool contains the following functions for building a project:

l Description blocks

Page 22 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The nmake tool can group dependencies for a specified block of command operations by using a
description block. A description block can list dependent source files that need compilation if a
source is out of date, for example.

l Command blocks

These group commands that perform operations on the dependencies listed in the description
block. Execution of the C compiler (cl) is an example of a command in a command block.

l Macros

Macros can be used to represent strings of characters, such as to represent specific compiler
options in an nmake file. For example, CC could represent one set of compiler options.

l Inference rules

These rules infer dependents for targets, such as to update description block targets, even when
there are no specified commands in the description block.

l Derivatives

These can be used to preprocess commands in an nmake file. For example, a derivation can
specify a macro to process decisions in the nmake file, such as to indicate options for a debug
build versus options for a release build.

l Dot derivatives

These can be used to set specific redefined options in an nmake file. For example the .SUFFIXES
dot derivative can set the suffixes for inference rule referencing.

Migrating a Build Environment to Visual Studio

The task of maintaining UNIX style code on the Windows platform must take into account the nature of
UNIX applications and build procedures. In UNIX, programs are compiled into object modules. The
object modules can be linked into executable files or used to create libraries. Libraries can either be
static archives (created with ar) used to add code to executable files, or be shared objects. UNIX
normally links by using the C/C++ compilers.

Windows programs are compiled by using the compiler. They are linked as executable files, static
libraries, or DLLs.

Table 4 compares the UNIX and Windows methods for creating executable files, static libraries, and
shared libraries.

Table 4. UNIX and Windows file creation comparison

File type Utility to create Command options
UNIX executable file Linker (ld)
UNIX static library Ar
UNIX shared library Linker (ld) -shared

Page 23 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

There are methods to migrate the build environment:

l Manually recreate the build structure. (See "Recreating the Build Structure" later in this chapter.)
l Use batch builds in conjunction with Visual Studio. (See "Using Batch Builds with Visual Studio"

later in this chapter.)
l Create a custom tool to manage projects and builds. (See "Creating a Custom Tool" later in this

chapter.)

Because each method starts with the UNIX makefile, the first step is to look into the project makefiles to
see what information needs to be migrated.

Look at setting and configurations first. To do this, use a makefile to create dependencies and rules that
generate the makefile target, usually the linked binary, such as an executable file. In addition to rules
and dependencies, macros can be created to represent variables for the functions to be performed,
options for each function, and directory locations. Common examples of macros in a makefile are shown
in the Table 5.

Table 5. Makefile macro examples

The CFLAGS, LDFLAGS, LIB, and INCLUDE variables yield the main information needed to create a
Visual Studio project on Windows, or to create an nmake file on Windows for a batch build. Makefiles
can be viewed by using a UNIX text editor, such as vi. Options can also be extracted by using UNIX
text utilities such as grep or awk. In the example shown below, grep finds the text pattern CFLAGS in
the file mymake:

% grep CFLAGS mymake

Dependency rules can also be expressed in the makefile, as shown in Table 6:

Table 6. Makefile dependency rules

A special type of dependency can be expressed by inference rules. By using these rules, target

Windows executable file Linker
Windows static library Linker
Windows dynamic libraryLinker

Macro Used for
CC An alias for the C/C++ compiler
CFLAGS The C compiler option setting
CPPFLAGS The C++ compiler settings
LDFLAGS Linker option flags
INCLUDE The directory path for header files
LIB Libraries to include at link time

Symbol Action
: Target is out of date, depending on the source.
! Target is repeated as sources are examined.
:: Target is accumulated.

Page 24 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

dependencies can be grouped together by common attributes. For example, a .SUFFIXES rule allows
files with a common file extension to have the same dependencies.

Recreating the build structure

For small to medium-sized applications, often the easiest way to migrate the project is to create the
Visual Studio project by hand. Because of their smaller size, this technique is useful for prototype
applications. It is especially suited to applications that have dependencies on only a single file tree, with
all the sources under a single starting directory.

Larger projects may require another scheme because they have a greater number of source files and the
UNIX build procedure is more complex. A long-term migration goal could be to standardize on the
Visual Studio tools. When all applications, including the largest ones, are considered, manually creating
and maintaining the Visual Studio projects becomes a daunting task.

Converting an application build from a makefile-based to a Visual Studio-based project

Rogue Wave SourcePro uses a makefile-based build model on all platforms, therefore, it provides a
good example of manually migrating a makefile-based project to a Visual Studio project.

To convert an application from a makefile-based build to a Visual Studio-based project, you must ensure
that flags passed to the compiler are the same, the necessary #defines are the same, and that the required
header file and library file paths are properly set in the Visual Studio environment. One way to obtain
this information is to run nmake from a command line, and redirect the output to a file. For example, if
you use the following command from the command line:

nmake > exampleBuild.txt

nmake will place the output of the compile and link into the exampleBuild.txt file, provided that there is
a makefile (named makefile) in the current directory.

Once you have addressed these issues, you can continue development in the Visual Studio environment.
The following is a general step-by-step guide to the process.

To convert a Rogue Wave application into an MSVC project

1. Start Visual Studio.
2. On the File menu, click New.
3. Select Win32 Console Application (all Rogue Wave examples are console applications), give it a

name, and click OK.
4. Select an empty project and click Finish.
5. Copy all the source code files from the example application folder to the project folder.
6. Under FileView (on the left of the screen), right-click Source Files, click Add files to folder, and

select all of the .cpp files copied to the project folder.
7. Repeat step 6 for Header Files and add all the header files in the project folder.
8. On the Project menu, click Settings, and then select the C++ tab. At the bottom of the dialog box,

you will find a text field for Project Options. You will need to find all of the compile options that
were used in the Rogue Wave application example and copy them here. To do this:

l Convert -I<anything> to /I "<anything>". If relative path is used in the application, you
need to convert it to absolute path.

l Convert -D<anything> to /D "<anything>".

Page 25 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Convert other options using a similar format; for example, -GX becomes /GX, and so on.
9. On the Project menu, click Settings, and then select the Link tab. Select Input from the drop-

down list at the top of the dialog box.
a. Find an -L<anything> from the Rogue Wave example application, and copy it to

Additional library path by entering <anything>.
b. Find the list of all libraries used in the example application, and copy the library names

under Object/library modules. Remove any pre-existing library names.
10. Compile the project. If you receive error messages about conflicting compiler options, then the

options cited in the error message were not found in the Rogue Wave example application.
Remove any unfound options.

Using batch builds with Visual Studio

The task of creating a Windows nmake file is similar to creating a Visual Studio project. However, the
process of creating a Windows makefile is different. When the Visual Studio IDE creates a project, it
automatically generates a Windows makefile suitable for use with a batch build. You can also use a
Windows text editor, such as Notepad, to create a project manually.

Although a batch build system can manage both the build process and the dependencies for a source
code base with hundreds or thousands of files, in such a system it is often difficult to debug a single
suspected problem file.

Creating a custom tool

To avoid the drawbacks of creating a project manually or using a batch build, a possible solution is to
create a tool. A custom tool can drive the Visual Studio COM Automation model to automatically create
Visual Studio projects. Equipped with such a tool, a developer can create a project that builds the
required sources in debug while the rest of the project remains in release. The tool can accomplish this
without manually changing an existing Visual Studio project or creating a new one.

Such a tool requires the following:

l A database of source files and dependencies. The UNIX makefile for a typical batch build is the
logical starting place for this information. A simple database can be created by parsing the
makefile and generating XML to store the resulting information.

l A batch script that uses the source dependency database to drive the Visual Studio COM
Automation interface. Windows Script Host provides all the capabilities necessary to access data
in XML and to use the automation model.

l A developer familiar with the Visual Studio COM Automation model must be available to create
the batch script.

Although using this strategy can slow build times, it should increase developer productivity. The gain
will be proportional to the size of the application source base; the larger the base, the greater the gain.

This strategy is also recommended when UNIX is to remain the primary development environment. The
tool can automatically convert UNIX makefiles to be used for Windows development. Thus, developers
can build the application on Windows and debug cross-platform problems.

In the section "Automation Script for Visual Studio," later in this chapter, a Windows Script Host script
uses VBScript and the Visual Studio 6.0 COM Automation model to create a project based on an XML

Page 26 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

definition. By using scripts like these, an administrator can leverage the interactive debug features of
Visual Studio while maintaining a batch build migrated from UNIX.

Managing cross-platform builds

During a migration, some applications may still need to be maintained and built on UNIX. These cases
require a cross-platform development and build strategy.

When building an application on multiple platforms, considerations include the following:

l Choose one platform as the main development platform.
l Identify and segregate platform-specific code that cannot be easily maintained with compiler

directives (#ifdef). It is easier to maintain such code separately for each platform if it is separated
into callable modules.

l Keep platform-specific code local to its target platform.
l Look for libraries that already offer cross platform support, such as most C runtime libraries and

OpenGL cross-platform libraries.
l Migrate source to multiple platforms with each release, rather than synchronizing source across

multiple platforms.
l Use batch builds on each platform. An automated process can usually be used to move a batch

build from one platform to another.
l Consider using a cross-platform build utility, such as GNU make.

Ultimately, the effort exerted to create and maintain a cross-platform build environment depends on how
often the changes to an application in one platform need to be migrated to another. A quicker migration
process may take less effort than a cross-platform build process.

Using the Development Environment

This section presents specific information on building, debugging, and automation in the Platform SDK,
Visual Studio, and Interix development environments. Each environment has specific tools and
advantages.

Using the Platform SDK

The Platform SDK includes a comprehensive set of debugging facilities, as described below.

Microsoft debugging tools first generate the proper work files by using compile-time options.
Developers must decide what level of symbols to generate. The debug environment also plays a role.

Debug information is typically generated by using one of the options shown Table 7.

Table 7. Options for generating debug information

Option Use
/Zi Creates a program debug database (.pdb) file. The

debugger uses this file to step through the source during
program execution.

/ZI Similar to /Zi. However, the .pdb file also supports edit

Page 27 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Any programs written in languages that support the creation of the .pdb files can be used in the
Windows debug environment. Because of this, a developer can debug an application source file where
calls are made between C, C++, and Fortran.

A developer can use the Platform SDK WinDBG tool to open a source file, then run the corresponding
debug version of an executable file. WinDBG searches for debug symbol information for the modules
that the executable file uses in the symbol image path.

To use WinDBG to debug an executable

1. From the GUI, open the source file corresponding to the executable file to debug.
2. Set the path for the symbols needed to debug the executable file.
3. Set desired breakpoints in the source file.
4. Open the executable file.

Other options for using WinDBG include:

l Attach to a running process.
l Open a crash dump file.
l Use a remote debug session to connect to another system.

The command debugger (CMD) can also be used to debug programs. CMD is especially useful to debug
a running program or to debug remotely. CMD also can analyze crash dumps by using symbols. For
example, this code uses CDB to analyze a crash dump file:

cdb -y <Symbol Path> -i <Image Path> -z <Dumpfile>

Using Visual Studio

When migrating a development environment from UNIX to Windows, one goal is usually to leverage
the Visual Studio development tools. However, it can appear to be a large manual task to manage the
creation and administration of Visual Studio projects. This is especially true for large projects with
hundreds or thousands of sources.

To support developer productivity, Visual Studio provides debugging and automation facilities, which
are particularly useful for repetitious tasks.

Debugging with Visual Studio

To debug a program using Visual Studio, the program must be compiled with the appropriate options
set. (For more information on the options, see the list in "Using the Platform SDK" previously in this

and continue.
/RTCc Report runtime truncation error
/RTCs Enables runtime stack checking, including overrun and

under-run of local variables, and stack register verification.
/RTCu Enables reporting of variables used without initialization.
/RTC1 Combination of RTCs and RTCu
/Zd Generates line number information.
/Yd Places debug information in the .obj files.

Page 28 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

chapter.) To use the Visual Studio debugger, in the configuration manager, set the active configuration
to debug. When the project is compiled, the debug session can begin.

You can run a debug session within a project opened in the Visual Studio 6.0 or by opening a remote
connection from the IDE. You can choose either option from Build menu in the Visual Studio IDE.

This section covers local debug sessions. You can start a local debug session by selecting Start debug
on the Build menu, and then either starting the program to be debugged or attaching debug to a running
process.

A developer can control a debug session through menu options or toolbars in the Visual Studio 6.0 IDE,
or through the use of shortcut keys. A top-level debug is created once a debug session starts. The Debug
menu includes the symbol for the toolbar button that accomplishes the same command. Table 8
describes the commonly used debug commands.

Table 8. Debug commands

To start a debug session

1. Set a breakpoint in the source where the debug execution will stop: right-click the appropriate line
in the source, then select Insert breakpoint or press CTRL+B.

2. On the IDE Debug menu, select Start, or press F5.

The program executes until the breakpoint is reached. At the breakpoint, from the Debug menu
you can view local variables, the call stack, registers, memory, processes, and threads from
windows.

3. To continue, set another breakpoint. Press F5 to continue, press F11 to step into the next line of

Command Description
Go Menu item–Build->Start Debugging->Go

Shortcut–F5
Step Into Menu item–Debug->Step Into

Shortcut–F11
Step Over Menu item–Debug->Step over

Shortcut–F10
Step Out Menu Item–Debug->Step Out

Shortcut–Shift +F11
Run to Cursor Menu item–Debug->Run to Cursor

Shortcut–Ctrl+F10
Stop Debugging Menu item–Debug->Stop Debugging

Shortcut–Shift+F5
Restart Menu Item–Debug->Restart

Shortcut–Ctrl+Shift+F5.
Set Break Point First move the cursor to the line in the source file where

you want a break point.
Menu item–Right click line in source, then select "Set
Break Point".
Shortcut–Ctrl+B

Page 29 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

code, press F10 to step over the next code line, or position the cursor to the next line to stop and
select Run to cursor.

This process continues until you terminate the debug session, the program abnormally terminates, or the
program terminates normally.

Developers can use the Visual Studio edit and continue feature during a debug session to change the
source and then recompile. If the developer changes the source while debug execution is paused (such as
at a breakpoint), the debugger can compile the change before proceeding with the debug session. To
enable this feature, compile the source with the -ZI option.

Automation with macros

Macros are built by using Visual Basic for Applications (VBA). The VBA IDE can be invoked from
within Visual Studio.

Macros can automate project generation and maintenance. In a conversion, macros can synchronize with
a batch build environment, integrate tools needed to support the Microsoft development environment, or
automate any repetitive process used during development. For example, macros can create add-ins or
wizards for the Visual Studio IDE.

A wizard can, for example, automate the task of creating project that supports OpenGL. The wizard
offers options such as support for Win32 GUI in the open OpenGL application, or making the OpenGL
application console based.

Based on input from the wizard, the appropriate Visual Studio project settings and libraries are included.
For example, if Win32 GUI support is needed, the wizard can include the OpenGL graphics library
utility toolkit (GLUT) libraries in the project.

Using Interix

The Interix subsystem can be used in conjunction with the Windows Platform SDK or Visual Studio.
The SDK, which provides a front end for Microsoft Visual C++, offers the benefits of the native
compiler for Windows while retaining a UNIX development environment. But the Interix environment
also offers the benefits of the GNU gcc and g++ compilers.

Differences between Interix and UNIX

The Interix environment is a UNIX environment, but there are some differences:

l The Interix SDK can be used to create UNIX-style .so libraries. Although similar to Windows
dynamic-link libraries (DLLs), .so libraries are not the same in implementation or semantics.

l Interix does not have or use the /etc/passwd file (or NIS passwd map file), which typically
contains a field with the name of each user's login shell. Therefore, when a user logs on to a
system by using Telnet, the login shell is not determined by a shell entry in /etc/password, but by
how the Telnet server is configured on the remote system. The Interix telnetd server, which can be
configured to be started by the inetd daemon (by entering a line in the inetd.conf file), uses the
Korn shell as the default login shell.

In Interix, user and group information is stored either in a Windows SAM database or in an Active

Page 30 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Directory database. The default login shell for Telnet is stored under the User Comment field of a
user account. An administrator can change the User Comment field from the command line by
using the Windows net command as follows:

net user logname /usercomment:" default shell" [/domain]

The logname argument is the name with which the user logs on. The /domain switch is optional if
the user logs on from the current domain. For example, the following command sets the default
logon shell to the C shell for a user named "carlos" in the current domain:

net user carlos /usercomment:"/bin/csh"

l On most UNIX systems, when a user logs on to the Korn shell, the shell runs at least two startup
files (login scripts), /etc/profile, and $HOME/.profile for setting up the environment. The C shell
runs similar scripts, /etc/csh.cshrc and /etc/csh.login, and multiple files in the home directory.

Interix shells work in a similar way, but include additional files that have the .lcl extension. The
Korn shell reads /etc/profile, which calls /etc/profile.lcl. The C shell reads /etc/csh.login, which
calls /etc/csh.lcl. Make any local system changes in the .lcl files. These settings affect all users
who log on to a shell.

Building applications with Interix

Applications are built by using Interix in the same way as they are built in the UNIX environment.
When building applications in the Interix environment, keep the following considerations in mind:

l The Interix SDK supports Visual C++ for compiling C programs. It does not support Visual C++
for compiling C++ programs. For C++ programs, the GNU g++ compiler is provided.

l The version of make provided with the Interix Software Development Kit (SDK) is based on the
Berkeley Software Distribution (BSD) 4.4 make and supports all BSD features. It also conforms
to POSIX.2. The GNU make (gmake) utility can help when porting the application's makefiles.

l To convert existing makefiles to run under the Interix subsystem, change macro definitions. Edit
the value of $(CFLAGS) to use only flags supported by cc or c89.

l The Interix SDK supports shared or dynamically linked libraries. Dynamic linking is supported by
using standard calls, such as dlopen(). Dynamically linked applications and shared libraries can be
created only by using gcc and the other GNU compiler tools.

l A typical problem when porting a UNIX application to Interix is that on builds, gcc in the Interix
SDK defaults to static libraries. To link to the shared libraries, use the compiler option --dynamic.
To force the compiler to link to the static libraries, use the compiler option --static.

l Shared libraries should linked to the libc.so library visible to them. It is usually incorrect to link
shared libraries to libc.a. Shared libraries should also link to libpsxdll.a, except when a shared
library makes no direct calls to libpsxdll.a entry points (the system calls). Because these system
calls are located in libpsxdll.a, a dynamic-link library, missing system call errors usually indicate
that libpsxdll.a was not included in the linking.

l The Interix SDK includes the liblock command, which locks a library to prevent the linker from
using it. If any process attempts to use a locked library to link, the ld command reports a fatal
error. There is no tool provided to unlock a library that has been locked by using liblock.
However, locking is vulnerable and is not a high-security option. The syntax is:

% liblock lib.so

Page 31 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Although the gcc command understands these rules of linking, use extreme caution if you are
invoking ld directly.

For an example of building an application with Interix, see "Building and Debugging with Interix" in
this chapter.

Running applications with Interix

On a Windows platform, applications run on specific subsystems and in specific environments. On the
Interix subsystem, applications run in a UNIX environment; on the Windows subsystem, applications
run in a Windows environment. The following examples illustrate this difference:

l When running an application that uses the Korn shell or C shell that come with Interix, or any
application that was compiled to use the Interix subsystem, the application runs in a UNIX
environment. This environment features case-sensitive file names, paths that use the
format /usr/examples, and other paradigms and tools a UNIX developer expects in any UNIX
environment.

l When running an application by using the command processor cmd.exe , the application runs in a
Windows environment. In this environment, file names are not case sensitive and paths use the
C:\SFU\usr\examples convention.

If the UNIX application to be migrated is a daemon, create symbolic links in /etc/rc2.d to scripts that
start and stop it, such as the start and stop scripts from the UNIX environment. Interix programs
designed to run as daemons can be controlled by using the usual UNIX mechanisms, such as by using
the kill utility to send signals to the program.

The Interix Korn shell follows traditional Korn shell behavior, which is almost identical to POSIX
behavior. But for strict POSIX conformance from the Korn shell, run the shell in POSIX mode.

To run the Korn shell in POSIX mode

1. Invoke the Korn shell with the -o posix option.
2. Run this command from within the shell: set -o posix.
3. Set the POSIXLY_CORRECT shell parameter.

The C shell does not support POSIX conformance. Unlike the Korn shell, it has no POSIX-mode
command options.

Debugging with Interix

The example in "Building and Debugging with Interix" shows how the gdb debugger can be used to
debug applications in the Interix environment. Table 9 describes the commands available for gdb:

Table 9. gdb commands

Command Description
run [args] Runs the program with the arguments specified by args.

If no arguments are specified, the last arguments given
are used.

break [address] Sets a breakpoint to stop execution at the specified

Page 32 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The gdb debugger also provides a help command for the various operations. To see a list of help issues,
type help at the gdb prompt. In addition to gdb, the Interix SDK includes the pstat and truss utilities to
help in debugging programs.

The pstat utility displays detailed information about a specified process.

Note If you have Administrator privileges (that is, if you are signed on as Administrator
and a member of local Administrator group), you can view any process ID. If you do not
have Administrator privileges, you can only view process IDs owned by your shell (that is,
launched from your shell).

For example, this is the output for process identifier (PID) 10187 (a C shell process):

% pstat 10187
pid=10187 ppid=1 pgid=10187 sid=10187 state=3 Active
flags=40000022 execed pgrp asleep
signal trampoline = 0x77EA1F66,0x77EA1F8F nullapi = 0x77EA7A07,0x77EA7A4F
current syscall=sigsuspend()
IP=77f8224d SP=0088da1c BP=0088daf8 FL=00000246 AX=00000000 BX=00000001
CX=00000000 DX=00000000 DI=0088eddc SI=0088da78
CS=0000001b DS=00000023 ES=00000023 FS=00000038 GS=00000000 SS=00000023

Although it does not have the same functionality, the truss utility was inspired by the System V utility
of the same name. The truss utility outputs information about system calls and signals.

For example, this output represents the system calls made on behalf of the cat concatenate and print files
utility:

% truss cat config.log
tracing pid 12491

address. The address can be a function name, a line in
the current file, a file name and a line number (as in
filename: number), or an offset from the current stop. If
no address is given, the breakpoint is set at the next
instruction.

continue [count] Continues execution. If count is specified, this
breakpoint is ignored for the next count passes.

step [count] Executes until the next line is reached, and repeats count
times.

next [count] Executes next line, including function calls, and repeats
count times.

list [address] Shows the next 10 lines of source or shows lines around
address. The address can be [filename:] number, or an
offset (indicated by + or -), or a range indicated by first,
last.

backtrace [n] Prints all frames in the stack. If n is positive, prints n
innermost frames. If n is negative, prints n outermost
frames.

print expression Prints the value of expression.
Quit Exits gdb.

Page 33 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

null() null returned 0
open("config.log", 0x1) open returned 3
fstat(1, 0x1210650, 0x1200650) fstat ret: 0 dev: 0x0 ino: 0x00000000
read(3, 0x8228E0, 512) read returned 127 0x7F
write(1, 0x8228E0, 127) This file contains any messages produced by compilers
while running configure, to aid debugging if configure makes a mistake.
write returned 127 0x7F
read(3, 0x8228E0, 512) read returned 0
close(3) close returned 0
close(1) close returned 0
exit(0) process exited with status 0

Building and Debugging with Interix

This section presents a C source code line-counting application written by T. E. Dickey. The source can
be downloaded from the c_count Web page

This source code provides an example of how to use Interix to build and run an application.

The process involves three stages:

1. Run a configuration script.
2. Build the application.
3. Debug the application.

By creating the application's makefile, a configuration script adapts the source code to the prgoram's
execution environment, that is, the hardware and operating system. Configuration scripts convey
configuration information to the application package by defining preprocessor variables, indicating the
presence or absence of specific features. Typically, the make variable CFLAGS provides this
information. However, the information can also be put into a file named config.h. With the config.h
solution, all the configuration information is in one location. The config.h method is provided by the
c_count program.

The config.h file contains information similar to this listing for the c_count program:

/*
 * $Id: config_h.in,v 7.1 1994/06/12 23:48:18 tom Exp $
 * config_h.in is a template file used by configure to produce config.h.
 * config_h is then transformed (by using config.status) into the header file
 * config.h - Kevin Buettner.
 */
#define const
#define HAVE_STDLIB_H 1
#define HAVE_GETOPT_H 1
#define HAVE_STRING_H 1
#define HAVE_MALLOC_H 1
#define DECLARED_GETOPT 1

The config.h listing for c_count shows that the configuration information defines some compile time
macros to be true (1). These are used in the c_count.c program (by including system.h) as arguments to
preprocessor #ifdef commands. Thus, they include some specific library header files, such as stdlib.h.

To verify that Interix provides these header files, an administrator can perform specific searches, for

Page 34 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

example:

% find /usr -name stdlib.h -print
/usr/include/stdlib.h

Or the administrator can list the contents of the main header directory. This is good check before
execution of the configuration script. For example:

ls /usr/include
alloca.h float.h mpool.h rpc typeinfo
ar.h fnmatch.h ndbm.h search.h tzfile.h
arpa form.h netdb.h setjmp.h ucontext.h
assert.h fts.h netinet signal.h ulimit.h
cpio.h ftw.h new stdarg.h unctrl.h
ctype.h g++ new.h stddef.h unistd.h
curses.h glob.h nl_types.h stdio.h utime.h
db.h gnu nl_types_private.h stdlib.h utmpx.h
dirent.h grp.h opennt string.h va_list.h
dlfcn.h interix panel.h strings.h varargs.h
err.h libgen.h paths.h stropts.h vis.h
errno.h limits.h poll.h sys wait.h
eti.h locale.h protocols syslog.h wchar.h
exception malloc.h pty.h tar.h xti.h
excpt.h math.h pwcache.h term.h
fcntl.h memory.h pwd.h termios.h
features.h menu.h regex.h time.h

Because the following configuration script is not a GNU configure script, it needs to be executed as
shown. The script first checks for system-supported features. It then creates the config.status file (used
to make the config.h file) and the makefile script to compile and link the application.

/configure -prefix=/usr/local -host=intel-pclocal-interix
loading cache ./config.cache
checking for gcc... (cached) cc
checking whether we are using GNU C... (cached) no
checking for a BSD compatible install... (cached) ./install.sh -c
checking how to run the C preprocessor... (cached) cc -E
checking whether make sets ${MAKE}... (cached) no
checking for working const... (cached) no
checking whether cross-compiling... (cached) yes
checking for ANSI C header files... (cached) no
checking for stdlib.h... (cached) yes
checking for getopt.h... (cached) yes
checking for string.h... (cached) yes
checking for malloc.h... (cached) yes
checking for strchr... (cached) no
checking for getopt... (cached) no
checking if compiler supports prototypes... (cached) no
checking if getopt is declared... (cached) yes
creating ./config.status
creating makefile
creating config_h
creating config.h
removing config_h

Because configuration scripts are used for a number of application packages, it is helpful to create the
following script to run configure scripts as part of the build environment setup. This script sets the

Page 35 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

compilation flags for C, C++, and CPP. It also includes the /usr/local directory for both include and
library files.

$ cat /usr/local/bin/runconfig
set -x
CPPFLAGS="-D_ALL_SOURCE -I/usr/local/include" \
CXXFLAGS="-D_ALL_SOURCE -I/usr/local/include" \
CFLAGS="-D_ALL_SOURCE -I/usr/local/include" \
LDFLAGS="-L/usr/local/lib" \
./configure --prefix=/usr/local \
-host=intel-pclocal-interix $*

Next, try the make command:

% make
cc -c -I. -I. -DHAVE_CONFIG_H -g c_count.c
mv c_count oc_count
mv: rename c_count to oc_count: No such file or directory
*** Error code 1 (ignored)
cc -o c_count c_count.o

The compile-time macro definition specifies that there is a config.h file. An error is generated, but only
because the makefile script attempts to save an old c_count program file to oc_count by using an mv
command. This is the first build; therefore, an old c_count program does not exist. The error will not
occur on subsequent builds.

This initial test uses the program to perform a self-analysis, which yields the following results:

% ./c_count c_count.c
 1015 347 |c_count.c

 1015 347 total lines/statements
 147 lines had comments 14.5 %
 36 comments are inline -3.5 %
 78 lines were blank 7.7 %
 41 lines for preprocessor 4.0 %
 785 lines containing code 77.3 %
 1015 total lines 100.0 %
 4335 comment-chars 18.5 %
 922 nontext-comment-chars 3.9 %
 5014 whitespace-chars 21.3 %
 643 preprocessor-chars 2.7 %
 12577 statement-chars 53.5 %
 23491 total characters 100.0 %
 1770 tokens, average length 4.85
 0.33 ratio of comment:code

The word count command performs a simple check:

% wc c_count.c
 1015 3309 23491 c_count.c

Notice the agreement with the total number of lines and characters in c_count.c.

This program also includes a self-test script, which yields the following output:

Page 36 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

% cd testing
% ./run_test.sh
**
** Case 1: Count lines in test-files (which have both unbalanced quotes and
** "illegal" characters:
** (ok)
**
** Case 2: Suppressing unbalanced-quote:
** (ok)
**
** Case 3: Counting by names given in standard-input:
warning: this program uses gets(), which is unsafe.
** (ok)
**
** Case 4: Counting bulk text piped in standard-input:
** (ok)
**
** Case 5: Counting history-comments
** (ok)
**
** Case 6: Display as a spreadsheet
** (ok)
**
** Case 7: Display as a spreadsheet (per-file)
** (ok)

In case the application detects a problem, the gdb debugger is available in the Interix SDK.However,
gdb has certain limitations in Interix. It provides useful information for object files compiled with gcc
and g++, but not for files compiled with cc or c89. It also does not implement watch points.

The Interix implementation of the gdb debugger works with shared libraries. It also includes some
additional commands. For more information, see gdb help for the shared and info shared commands.

gdb can be used on a program or an object file only if the program was created with debugging
information, that is, compiled with the -g option. The g option stores symbol information and line
numbers. The debugger refers to the source code only if the source code is available on the system. By
default, gdb looks for the source files in the directory from which gdb was executed. Also, gdb can be
used to examine the core files created when an application faults.

The basic steps for debugging a program are:

1. Include debugging information when compiling and linking the program.
2. Start gdb.
3. Debug the program.

The following shows the output from the gdb command when executing the c_count application:

% gdb c_count
GNU gdb 4.16.1
Copyright 1997 Free Software Foundation, Inc.
gdb is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for gdb. Type "show warranty" for details.
This gdb was configured as "i386-pc-interix"...
(gdb) file c_count

Page 37 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Reading symbols from c_count …
Done.
(gdb) run c_count.c (This statement says run the program with argument
"c_count.c")
Starting program: /usr/examples/c_count/c_count c_count.c
 1015 347 |c_count.c

1015 347 total lines/statements
 147 lines had comments 14.5 %
 36 comments are inline -3.5 %
 78 lines were blank 7.7 %
 41 lines for preprocessor 4.0 %
 785 lines containing code 77.3 %
 1015 total lines 100.0 %
 4335 comment-chars 18.5 %
 922 nontext-comment-chars 3.9 %
 5014 whitespace-chars 21.3 %
 643 preprocessor-chars 2.7 %
 12577 statement-chars 53.5 %
 23491 total characters 100.0 %
 1770 tokens, average length 4.85
 0.33 ratio of comment:code
Program exited normally. (Notice the program's output is identical.)
(gdb) list
917 int main (
918 _ARG(int, argc),
919 _ARG(char **, argv)
920)
921 _DCL(int, argc)
922 _DCL(char **, argv)
923 {
924 register int j;
925 auto char name[BUFSIZ];
926 auto int opt_all = -1;
The gdb list command lists the next 10 lines of source code. (Note:
 gdb was able to find source file in the current directory.)
(gdb) list 929 (A line number can be specified, to list 10 lines
 starting 5 lines before the specified line)
924 register int j;
925 auto char name[BUFSIZ];
926 auto int opt_all = -1;
927
928 quotvec = typeCalloc(char *, (size_t)argc);
929 while ((j = getopt(argc,argv,"cdijlo:pq:stv")) !=
 EOF) switch(j) {
930 case 'l': opt_all = FALSE; opt_line = TRUE;
break;
931 case 'c': opt_all = FALSE; opt_char = TRUE;
break;
932 case 'i': opt_all = FALSE; opt_name = TRUE;
break;
933 case 's': opt_all = FALSE; opt_stat = TRUE;
break;
(gdb) break 929 (Set a breakpoint at source line 929)
Breakpoint 1 at 0x402cd4: file c_count.c, line 929.
(gdb) run
Starting program: /usr/examples/c_count/c_count c_count.c
Breakpoint 1, main (argc=2, argv=0x106ac) at c_count.c:929
929 while ((j = getopt(argc,argv,"cdijlo:pq:stv")) !=
 EOF) switch(j) {

Page 38 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

(gdb) print argc (Print out argc, the number of arguments)
$1 = 2
(gdb) print argv[1] (Print out the value of the second argument)
$4 = 0x107e2 "c_count.c"
(gdb) print argv[0] (Print out the value of the first argument)
$5 = 0x107c4 "/usr/examples/c_count/c_count"
(gdb) continue (Now continue)
Continuing.
 1015 347 |c_count.c

1015 347 total lines/statements
 147 lines had comments 14.5 %
 36 comments are inline -3.5 %
 78 lines were blank 7.7 %
 41 lines for preprocessor 4.0 %
 785 lines containing code 77.3 %
 1015 total lines 100.0 %
 4335 comment-chars 18.5 %
 922 nontext-comment-chars 3.9 %
 5014 whitespace-chars 21.3 %
 643 preprocessor-chars 2.7 %
 12577 statement-chars 53.5 %
 23491 total characters 100.0 %
 1770 tokens, average length 4.85
 0.33 ratio of comment:code
Program exited normally.

For more information about building and debugging with Interix, see Help for Services for UNIX and
the gdb online help.

Building and Debugging with Visual Studio

This section examines creating a project for the T.E. Dickey Count program for Win32 using Visual
Studio 6.0. (You should already have Visual Studio 6.0 installed on your system prior to running this
example.)

First, you must create a Visual Studio project.

To create a Visual Studio project

1. Start Visual Studio 6.0.
2. Create a directory for the count project. For this example, create a Samples directory in your My

Documents folder. If you are using the C drive, the full path is C:\Documents and
Settings\<CurrentUser>\My Documents\Samples\.

3. Start Visual C++ 6.0.
4. Create a new project: on the File menu, click New.
5. Select the Projects tab. In the Location box, enter the path for the new project directory. In this

example, the path is C:\Documents and Settings\<Current User>\My Documents\Samples.
6. In the Project Name box, enter the name of the project. For this example, use vscount.
7. Click the Create New Workspace button.
8. In the Platforms list, select the Win32 check box.
9. Select Win32 Console Applications from the list box, and click OK.

10. A new dialog box will appear with the title Win32 Console Application–Step 1 of 1. Select the
An Empty Project button, and click Finish.

Page 39 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

A summary dialog box will appear with the following information:

Win32 Console Application will create a new skeleton with the following specifications:

+Empty console application

+No files will be created or added to the project

Project Directory:

C:\Documents and Settings\<Current User>\Samples\vscount"

You now have a Visual C++ 6.0 empty console application project and are ready to populate the project
with the count source files.

To populate the project

1. Download the c_count source.
2. This site contains a gzip tar file. Extract the gzip tar file to a temporary directory. (WinZip will

perform the extract.) Copy the following extracted files to the project directory you created.
l Source files—c_count.c (extracted in the c_count-7.7 directory), getopt.c (extracted in the

c_count-7.7\porting directory)
l Header files—patchlev.h and system.h (extracted in the c_count-7.7 directory), getopt.h

(extracted in the c_count-7.7\porting directory)
3. Now you are ready to add the count source files to the empty project, as follows:

a. Select the File View tab on the Visual C++ 6.0 Project Explorer window. This is usually on
the left side of the project workspace. Expand the tree view for vscount by clicking the "+"
character. If the "-" character is shown, the project folders are already in view.

b. Highlight the Source Files folder.
c. On the Project menu, select Add to Project, and then select Files. The Insert Files into

Project window appears.
d. Navigate to the directory that contains c_count.c and getopt.c. For the example, this is the

C:\Documents and Settings\<Current User>\Samples\vscount folder.
e. Select the files to insert into the project.

The program is now ready to compile. Visual C++ automatically selects Win32 Release and Win32
Debug as available configurations to compile and sets Win32 Debug as the active configuration. You
can add other configurations by selecting Configurations on the Build menu. A window will appear
that lists the two available configurations, and allows an option to add configurations. However, for this
the example, Win32 Release and Win32 and Win32 Debug are the only configurations needed.

Although the project automatically sets Win32 Debug as the active configuration, you can easily change
this by selecting Set Active Configuration on the Build menu. The Set Active Project Configuration
window will appear. To change the active configuration, highlight the desired configuration in the list,
and click OK. However, for this the example, no change is needed.

To compile the project, select Build vscount on the Build menu or press the F7 shortcut key. If you
don't change any of the Visual C++ default compile and link settings, the build will report the following
in the output window. This particular set of source generates one warning, but otherwise builds cleanly.

Page 40 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Deleting intermediate files and output files for project 'vscount – Win32 Debug'.
--------Configuration: vscount - Win32 Debug----------

Compiling...
getopt.c
c_count.c
c:\Documents and Settings\<Current User>\Samples\vscount\c_count-
7.7\c_count.c(1164) : warning C4013: '_setargv' undefined;
assuming extern returning int
Linking...
vscount.exe - 0 error(s), 1 warning(s)

There are various settings you could change by selecting Setting on the Project menu or by pressing the
Alt+F7 keys. A window will appear with tabs that categorize the particular options. These options are
described in Table 10.

Table 10. Compile settings

The default project setting for the Win32 Debug configuration creates the files you need so that you can
debug the project. However, you need to set a few additional options to actually debug the program.

l You must set the debug working directory. To do this, click the Debug tab on the Project Settings
window, and enter the path in the Working Directory box. For this example, use C:\Documents
and Settings\<Current User>\Samples\vscount. (You should have already specified this directory,
so you can skip this step.)

l You must set the program arguments. To do this, click the Debug tab on the Project Settings
window, and enter the arguments in the Program Arguments text box. For this example, enter the
name of the source file to be counted: in this case, c_count.c.

Now you are ready to run the program in a debug session. First run the program without setting break
points. To do this, on the Build menu, select the ! Execute vscount.exe menu option or press the
Ctrl+F5 shortcut keys or the ! symbol on the toolbar. If you run the program without break points, you
receive the following output in a command line window.

1270 453 |c_count.c

 1270 453 total lines/statements

 185 lines had comments 14.6 %
 33 comments are inline -2.6 %
 92 lines were blank 7.2 %

Dialog tab Description
General General options include the project directories, project

arguments, executable name
Debug Options for debugging
C/C++ The various compiler options
Link The various linker options
Resources Language, resource file and pre-processor definitions
Browse info Options for builder the browse info files
Custom build Additional command options to add to the build
Pre-link step List of commands to run prior to the link
Post-build step List of commands to run after the build

Page 41 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 49 lines for preprocessor 3.9 %
 977 lines containing code 76.9 %
 1270 total lines 100.0 %

 5127 comment-chars 16.6 %
 1037 nontext-comment-chars 3.3 %
 7725 whitespace-chars 24.9 %
 851 preprocessor-chars 2.7 %
 16231 statement-chars 52.4 %
 30971 total characters 100.0 %
 2243 tokens, average length 5.00
 0.30 ratio of comment:code
 46 top-level blocks/statements
 7 maximum blocklevel
2.80 ratio of blocklevel:code

To begin an actual debug session, you must determine how to start the program and where to stop the
program. For this example, set a break point at line 1164 in the c_count.c program.

To set the break point and start the debug session

1. Select the Project Explorer FileView tab.
2. Open the c_count.c source in the main project window by double-clicking the appropriate file

name under the Source Files folder of the vscount tree view.
3. Move the cursor to line 1164 in the source file, and set a break point by right-clicking and

selecting Insert/Remove Breakpoint on the menu. You can also set a break point by pressing
Ctrl+B and specifying line 1164 on the Break at list.

4. Start the debug session by clicking the Build menu, selecting Start Debug, and clicking Go. You
can also start the debug session by pressing F5.

The debug session will start and the following output will appear when the program stops at line 1164.

Loaded 'ntdll.dll', no matching symbolic information found.
 Loaded 'C:\WINNT\system32\kernel32.dll', no matching symbolic information found.

At this point, you can view debug information about the project. Table 11 lists the debug information
windows available and the values for the variables, call stack windows, and registers.

Table 11. Debug output

Variables Window

+ &argc 0x0012ff88

Window Description
Output Output window for debug information
Watch Window to define variables to watch during the debug

session
Variables Values of local variable within functions in the call stack
Registers Values of system registers
Call Stack List of the current call stack
Memory Values at memory address

Page 42 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 argc 0x00000002
+ &argv 0x0012ff8c "•D"
+ argv 0x00440e80
 j 0xcccccccc
+ name 0x0012fd7c ""

Call Stack Window

main(int 0x00000002, char * * 0x00440e80) line 1164
mainCRTStartup() line 206 + 25 bytes
KERNEL32! 77e7eb69()

Registers Window

EAX = CCCCCCCC EBX = 7FFFF000
 ECX = 00000000 EDX = 00440D80
 ESI = 00000000 EDI = 0012FF80
 EIP = 0040135E ESP = 0012FD24
 EBP = 0012FF80 EFL = 00000206 CS = 001B
 DS = 0023 ES = 0023 SS = 0023 FS = 0038
 GS = 0000 OV=0 UP=0 EI=1 PL=0 ZR=0 AC=0
 PE=1 CY=0
 ST0 = +0.00000000000000000e+0000
 ST1 = +0.00000000000000000e+0000
 ST2 = +0.00000000000000000e+0000
 ST3 = +0.00000000000000000e+0000
 ST4 = +0.00000000000000000e+0000
 ST5 = +0.00000000000000000e+0000
 ST6 = +0.00000000000000000e+0000
 ST7 = +0.00000000000000000e+0000
 CTRL = 027F STAT = 0000 TAGS = FFFF
 EIP = 00000000 CS = 0000 DS = 0000
 EDO = 00000000

You can now try the additional debug functions such as:

l Stepping line by line through the program
l Setting another break point
l Stepping in or out of functions
l Continuing with the program execution

For now, continue program execution by selecting the Go on the Debug menu option or by pressing F5.
The debug menu appears when a debug session starts. A complete list of debug navigation options is
available in the "Debugging with Visual Studio" section of this chapter.

If you continue program execution, the program will terminate normally, adding the following entries to
the output window.

The thread 0x1DC has exited with code 0 (0x0).
The program 'C:\Documents and Settings\<Current
User>\SAMPLES\vscountv\Debug\vscount.exe' has exited with code 0 (0x0).

Note The thread number will vary by depending on the load of the system used for testing
this example.

Page 43 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Automation Script for Visual Studio

This section presents a Windows Script Host script that uses VBScript and the Visual Studio 6.0 COM
Automation model to create a project based on an XML definition. The script automates the process of
creating Visual Studio projects for testing and debug purposes. It assumes the application uses a batch
build environment.

In this example, "control script" creates and populates a Visual Studio 6.0 project by using a project
definition contained in an XML file. XML was chosen as a portable, self-describing data format that can
be used in the command-line interface of any integrated development environment. Because of this, the
XML definition need not change even if the Automation interfaces for Visual Studio change.

Project Automation Script

<?xml version="1.0"?>
<!--
File Name: VSAutomation.wsf
Purpose : This file contains jobs to process the scripts.
 It needs VSAutoLib.vbs and VSProjectData.xml files.
Author : Microsoft Consulting Services
Date : March 18, 2002
-->
<package>
 <job id="CREATE">
 <script language="VBScript" src="VSAutoLib.vbs" />
 <script language="VBScript">
 <![CDATA[
 createVSProjects "E:\\VSProjectData.xml"
]]>
 </script>
 </job>
 <job id="BUILD">
 <script language="VBScript" src="VSAutoLib.vbs" />
 <script language="VBScript">
 <![CDATA[
 buildVSProjects "E:\\VSProjectData.xml"
]]>
 </script>
 </job>
</package>
XML Project Data Definition
<?xml version="1.0"?>
<!--
 File Name: VSProjectData.xml
 Purpose : Visual Studio Project Data
 Author : Microsoft Consulting Services
 Date : March 18, 2002
-->
<Workspace>
 <Projects>
 <Project>
 <Name>myProject</Name>
 <Type>Console Application</Type>
 <Path>E:\MigrationSource\myProjects\myProject\</Path>
 <Files>
 <File>

Page 44 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 <Name>mySrcFile1.cpp</Name>
 <Path>E:\MigrationSource\source\</Path>
 </File>
 <File>
 <Name>mySrcFile2.cpp</Name>
 <Path>E:\MigrationSource\source\</Path>
 </File>
 <File>
 <Name>myHdrFile1.h</Name>
 <Path>E:\MigrationSource\source\</Path>
 </File>
 </Files>
 <Configurations>
 <Configuration>
 <Name>Win32 Debug</Name>
 <BuildFlag>No</BuildFlag>
 </Configuration>
 <Configuration>
 <Name>Win32 Release</Name>
 <BuildFlag>yes</BuildFlag>
 </Configuration>
 </Configurations>
 </Project>
 <Project>
 <Name>myProject2</Name>
 <Type>Console Application</Type>
 <Path>E:\MigrationSource\myProjects\myProject2\</Path>
 <Files>
 <File>
 <Name>mySrcFile1.cpp</Name>
 <Path>E:\MigrationSource\source\</Path>
 </File>
 <File>
 <Name>mySrcFile2.cpp</Name>
 <Path>E:\MigrationSource\source\</Path>
 </File>
 <File>
 <Name>myHdrFile1.h</Name>
 <Path>E:\MigrationSource\source\</Path>
 </File>
 </Files>
 <Configurations>
 <Configuration>
 <Name>Win32 Debug</Name>
 <BuildFlag>yes</BuildFlag>
 </Configuration>
 <Configuration>
 <Name>Win32 Release</Name>
 <BuildFlag>no</BuildFlag>
 </Configuration>
 </Configurations>
 </Project>
 </Projects>
</Workspace>
<!-- End of Data -->

VBScript Using Visual Studio COM Automation

Option Explicit

Page 45 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

'**
' File Name: VSAutoLib.vbs
' Purpose : This file contains library functions used by
 VSAutomation.wsf
' Author : Microsoft Consulting Services
' Date : March 18, 2002
' History :
' ==========
'
'
'**
'''
' Procedure Name: createVSProjects
' Parameters : 1. XML Data File Name
' Logic : o Load the XML Data File
' o Traverse through the Project Information and
 Create it
' if did not exist
' o Traverse through the File Information and Add
 them to
' the Project
'''
Public Sub createVSProjects(strXMLDataFileName)
 Dim xmlDoc 'XML Document Object
 Dim xmlProjectNodeList 'Project Node List
 Dim xmlProjectChildNode 'Project Child Node
 Dim xmlFileNodeList 'File Node List
 Dim xmlFileChildNode 'File Child Node
 Dim intProjectIndex 'Project Index
 Dim intFileIndex 'File Index
 Dim strPName 'Project Name
 Dim strPType 'Project Type
 Dim strPPath 'Project Path
 Dim strPFullName 'Project Full Name
 Dim strFName 'File Name
 Dim strFPath 'File Path
 Dim strFFullName 'File Full Name
 Dim objApplication 'Visual Studio Application Object
 Dim colDocuments 'Documents Collection Object
 Dim objDocument 'Document object
 Dim colProjects 'Projects Collection Object
 Dim objProject 'Project Object
 Dim objFileSystem 'File System Object
 Dim blnProjectExists 'Project Flag
 Dim blnFileExists 'File Flag

 '***
 ' Initialize the object handles
 '***
 Set xmlDoc = Nothing
 Set colDocuments = Nothing
 Set xmlProjectNodeList = Nothing
 Set xmlProjectChildNode = Nothing
 Set xmlFileNodeList = Nothing
 Set xmlFileChildNode = Nothing
 Set objProject = Nothing
 Set colProjects = Nothing

 '***
 ' Load the XML Project Data file

Page 46 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 '***
 Set objFileSystem = CreateObject("Scripting.FileSystemObject")
 blnFileExists = objFileSystem.FileExists(strXMLDataFileName)
 Set objFileSystem = Nothing

 If blnFileExists Then
 WScript.echo "XML Data File Name: " & strXMLDataFileName
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.Async = False
 xmlDoc.Load(strXMLDataFileName)

 '***
 ' Create the Application Object
 '***
 Set objApplication = CreateObject("MSDEV.Application")
 objApplication.Visible = False
 '***
 ' Get the Project Node List
 '***
 Set xmlProjectNodeList =
xmlDoc.documentElement.selectNodes("Projects/Project")

 If xmlProjectNodeList.Length > 0 Then
 WScript.Echo "Total Number of Projects: " &
 xmlProjectNodeList.Length
 WScript.Echo

 '***
 ' Traverse the Project Node List
 '***
 For intProjectIndex = 0 To (xmlProjectNodeList.Length - 1)
 Set xmlProjectChildNode = xmlProjectNodeList.nextNode

 '***
 ' Get the Project Information
 '***
 strPName = xmlProjectChildNode.selectSingleNode("Name").text
 strPType = xmlProjectChildNode.selectSingleNode("Type").text
 strPPath = xmlProjectChildNode.selectSingleNode("Path").text
 strPFullName = strPPath & strPName & ".dsp"

 WScript.Echo "Project Number: " & intProjectIndex + 1
 WScript.Echo " Name : " & strPFullName
 WScript.Echo " Type : " & strPType
 WScript.Echo
 '***
 ' Check the Project Existence and Create the Project
 '***
 Set objFileSystem = CreateObject("Scripting.FileSystemObject")
 blnProjectExists = objFileSystem.FileExists(strPFullName)
 Set objFileSystem = Nothing
 Set colDocuments = objApplication.Documents
 colDocuments.CloseAll

 If blnProjectExists Then
 WScript.Echo "Project " & strPFullName & " already
exists!!!"
 WScript.Echo
 '***
 ' Open the Project

Page 47 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 '***
 colDocuments.Open strPFullName, "Auto"
 Else
 WScript.Echo "Project: " & strPFullName & " does not
exist!!!"
 objApplication.AddProject strPName, strPPath, strPType,
True
 WScript.Echo "Error: " & Err.Description
 WScript.Echo "Project: " & strPFullName & " has been
created!!!"
 WScript.Echo
 End If

 '***
 ' Traverse through the VS Project collection
 '***
 Set colProjects = objApplication.Projects

 WScript.Echo "Total Projects in Collection: " &
 colProjects.Count

 For Each objProject In colProjects
 If objProject.FullName = strPFullName Then
 '***
 ' Get the File Node List
 '***
 Set xmlFileNodeList =
xmlProjectChildNode.selectNodes("Files/File")

 If xmlFileNodeList.Length > 0 Then
 WScript.Echo Space(5) & "Total Number of Files: " &
 xmlFileNodeList.Length
 WScript.Echo
 '***
 ' Traverse the File Node List
 '***
 For intFileIndex = 0 To (xmlFileNodeList.Length - 1)
 Set xmlFileChildNode = xmlFileNodeList.nextNode

 '***
 ' Get the File Information
 '***
 strFName =
 xmlFileChildNode.selectSingleNode("Name").text
 strFPath =
 xmlFileChildNode.selectSingleNode("Path").text
 strFFullName = strFPath & strFName

 WScript.Echo Space(5) & "File Number: " &
 intFileIndex + 1
 WScript.Echo Space(5) & " Name : " & strFName
 WScript.Echo Space(5) & " Path : " & strFPath
 WScript.Echo

 '***
 'Add File to the Project
 '***
 If objProject.Type = "Build" Then
 On Error Resume Next
 objProject.AddFile strFFullName

Page 48 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 WScript.Echo Space(5) & "File " & strFFullName
 & " added to the Project"
 End If
 Next
 WScript.Echo
 Else
 WScript.Echo "XML Data does not have any Files to be
 added to the Current Project!!!"
 End If
 '***
 ' Done with the current project - exit the loop
 '***
 Exit For
 End If
 Next
 Next
 Else
 WScript.Echo "XML Data does not have any Project
Information!!!"
 End If
 Else
 WScript.Echo "XML Data File " & strXMLDataFileName & " does not
 exist!!!. Please check the Path."
 End If
 '***
 ' Quit the Application
 '***
 objApplication.Quit
 '***
 ' Cleanup
 '***
 If Not (objProject Is Nothing) Then
 Set objProject = Nothing
 End If

 If Not (colProjects Is Nothing) Then
 Set colProjects = Nothing
 End If
 If Not (xmlFileChildNode Is Nothing) Then
 Set xmlFileChildNode = Nothing
 End If

 If Not (xmlFileNodeList Is Nothing) Then
 Set xmlFileNodeList = Nothing
 End If

 If Not (xmlProjectChildNode Is Nothing) Then
 Set xmlProjectChildNode = Nothing
 End If

 If Not (xmlProjectNodeList Is Nothing) Then
 Set xmlProjectNodeList = Nothing
 End If

 If Not (xmlDoc Is Nothing) Then
 Set xmlDoc = Nothing
 End If
 If Not (colDocuments Is Nothing) Then
 Set colDocuments = Nothing
 End If

Page 49 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 If Not (objApplication Is Nothing) Then
 Set objApplication = Nothing
 End If

 WScript.Echo
 WScript.Echo "Done!!!"
End Sub
'''
' Procedure Name: buildVSProjects
' Parameters : 1. XML Data File Name
' Logic : o Load the XML Data File
' o Traverse through the Project Information and Get
the
' Configurations
' o Build the requested configurations
'''
Public Sub buildVSProjects(strXMLDataFileName)
 Dim xmlDoc 'XML Document Object
 Dim xmlProjectNodeList 'Project Node List
 Dim xmlProjectChildNode 'Project Child Node
 Dim intProjectIndex 'Project Index
 Dim xmlConfigNodeList 'Configuration Node List
 Dim xmlConfigChildNode 'Configuration Child Node
 Dim intConfigIndex 'Configuration Index
 Dim strPName 'Project Name
 Dim strPType 'Project Type
 Dim strPPath 'Project Path
 Dim strPFullName 'Project Full Name
 Dim objApplication 'Visual Studio Application Object
 Dim colDocuments 'Documents Collection Object
 Dim colProjects 'Projects Collection Object
 Dim objProject 'Project Object
 Dim objFileSystem 'File System Object
 Dim blnProjectExists 'Project Flag
 Dim objConfiguration 'Configuraion Object
 Dim colConfigurations 'Configuraion Collection Object
 Dim strConfigName 'Configuration Name
 Dim strBuildFlag 'Configuration Build Flag
 Dim blnFileExists 'File Flag

 '***
 ' Initialize the object handles
 '***
 Set xmlDoc = Nothing
 Set xmlProjectNodeList = Nothing
 Set xmlProjectChildNode = Nothing
 Set xmlConfigNodeList = Nothing
 Set xmlConfigChildNode = Nothing
 Set objProject = Nothing
 Set colProjects = Nothing
 Set objConfiguration = Nothing
 Set colConfigurations = Nothing
 '***
 ' Load the XML Project Data file
 '***
 Set objFileSystem = CreateObject("Scripting.FileSystemObject")
 blnFileExists = objFileSystem.FileExists(strXMLDataFileName)
 Set objFileSystem = Nothing

Page 50 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 If blnFileExists Then
 WScript.echo "XML Data File Name: " & strXMLDataFileName
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")
 xmlDoc.Async = False
 xmlDoc.Load(strXMLDataFileName)

 '***
 ' Create the Application Object
 '***
 Set objApplication = CreateObject("MSDEV.Application")
 objApplication.Visible = False

 '***
 ' Get the Project Node List
 '***
 Set xmlProjectNodeList =
 xmlDoc.documentElement.selectNodes("Projects/Project")

 If xmlProjectNodeList.Length > 0 Then
 WScript.Echo "Total Number of Projects: " &
 xmlProjectNodeList.Length
 WScript.Echo

 '***
 ' Traverse the Project Node List
 '***
 For intProjectIndex = 0 To (xmlProjectNodeList.Length - 1)
 Set xmlProjectChildNode = xmlProjectNodeList.nextNode

 '***
 ' Get the Project Information
 '***
 strPName = xmlProjectChildNode.selectSingleNode("Name").text
 strPPath = xmlProjectChildNode.selectSingleNode("Path").text
 strPFullName = strPPath & strPName & ".dsp"

 WScript.Echo "XML Project Name: " & strPFullName
 WScript.Echo

 Set colDocuments = objApplication.Documents
 colDocuments.CloseAll

 On Error Resume Next
 colDocuments.Open strPFullName, "Auto"

 Set colProjects = objApplication.Projects
 For Each objProject In colProjects
 If objProject.FullName = strPFullName Then
 '***
 ' Get the Configuration Node List
 '***
 Set xmlConfigNodeList =
xmlProjectChildNode.selectNodes("Configurations/Configuration")

 If xmlConfigNodeList.Length > 0 Then
 WScript.Echo "Total Number of Configurations: " &
 xmlConfigNodeList.Length
 WScript.Echo
 For intConfigIndex = 0 To (xmlConfigNodeList.Length –
1)

Page 51 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 Set xmlConfigChildNode = xmlConfigNodeList.nextNode

 '***
 ' Get the Configuration Information
 '***
 strConfigName =
 xmlConfigChildNode.selectSingleNode("Name").text
 strBuildFlag =
xmlConfigChildNode.selectSingleNode("BuildFlag").text

 WScript.Echo "Configuration Number: " &
 intConfigIndex + 1
 WScript.Echo " Name : " & strConfigName
 WScript.Echo " Flg : " & strBuildFlag
 WScript.Echo
 Set colConfigurations = objProject.Configurations
 For Each objConfiguration In colConfigurations
 If InStr(UCase(objConfiguration.Name),
 UCase(strConfigName)) > 0 Then
 If UCase(strBuildFlag) = "YES" Then
 WScript.Echo "Building " & strConfigName &
"..."
 WScript.Echo
 objApplication.Build objConfiguration
 End If
 Exit For
 End If
 Next
 Next
 Else
 WScript.Echo "XML Data does not have any Configurations
 for the Current Project!!!"
 End If
 Exit For
 End If
 Next
 Next
 Else
 WScript.Echo "XML Data does not have any Project
Information!!!"
 End If
 Else
 WScript.Echo "XML Data File " & strXMLDataFileName & " does not
 exist!!!. Please check the Path."
 End If

 '***
 ' Quit the Application
 '***
 objApplication.Quit
 '***
 ' Cleanup
 '***
 If Not (objProject Is Nothing) Then
 Set objProject = Nothing
 End If

 If Not (colProjects Is Nothing) Then
 Set colProjects = Nothing
 End If

Page 52 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 If Not (xmlConfigChildNode Is Nothing) Then
 Set xmlConfigChildNode = Nothing
 End If

 If Not (xmlConfigNodeList Is Nothing) Then
 Set xmlConfigNodeList = Nothing
 End If

 If Not (xmlProjectChildNode Is Nothing) Then
 Set xmlProjectChildNode = Nothing
 End If

 If Not (xmlProjectNodeList Is Nothing) Then
 Set xmlProjectNodeList = Nothing
 End If

 If Not (xmlDoc Is Nothing) Then
 Set xmlDoc = Nothing
 End If
 If Not (objConfiguration Is Nothing) Then
 Set objConfiguration = Nothing
 End If
 If Not (colConfigurations Is Nothing) Then
 Set colConfigurations = Nothing
 End If

 If Not (objApplication Is Nothing) Then
 Set objApplication = Nothing
 End If

 WScript.Echo
 WScript.Echo "Done!!!"
End Sub

Send feedback to Microsoft

© Microsoft Corporation. All rights reserved.

Page 53 of 53Chapter 7: Creating the Development Environment

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

