
UNIX Application Migration Guide

Chapter 5: Planning the Migration

Larry Twork, Larry Mead, Bill Howison, JD Hicks, Lew Brodnax, Jim McMicking, Raju Sakthivel,
David Holder, Jon Collins, Bill Loeffler
Microsoft Corporation

October 2002

Applies to:
 Microsoft® Windows®

UNIX applications

The patterns & practices team has decided to archive this content to allow us to streamline our latest
content offerings on our main site and keep it focused on the newest, most relevant content. However,
we will continue to make this content available because it is still of interest to some of our users.
We offer this content as-is, without warranty that it is still technically accurate as some of the material is
undoubtedly outdated. Note that the content may contain URLs that were valid when originally
published, but now link to sites or pages that no longer exist.

Summary: Chapter 5: Planning the Migration addresses the final touches on your migration plan,
combining the high-level migration process from Chapter 3 with the detailed assessment of your
application in Chapter 4. Upon completion, you will have the complete documented framework for your
migration. (19 printed pages)

Contents

Introduction
Starting the Migration Project
Cataloging and Managing Risks
Creating a Project Plan
Planning the Project Resources
Planning Execution

Introduction

Although the migration project has already started, it is not until the analysis and assessment activities
have finished that you are able to judge the scale and scope of the migration. At this stage you are able
to:

UNIX Code Migration Guide

Page 1 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Initiate the migration project, by confirming its intentions and deliverables.
l Catalog and analyze issues and risks that may jeopardize the migration.
l Produce plans and schedules for the coming stages of the project.
l Identify, agree upon and allocate resources to the project.

This section presents a project framework based on the Microsoft® Solutions Framework (MSF). This
framework is a methodology for running software projects and illustrates how software development
cycles can be used to create quality software on time and within budget.

Every software development project is part of a larger software development lifecycle. During the
lifecycle, all of the activities necessary for creating, shipping or deploying software repeat with each
release. The repeated steps include specifying the project deliverables, implementing them, testing the
resulting modules and creating documentation. The MSF process model is milestone-based, as is the
traditional waterfall model, but it also includes the spiral model often promoted for Rapid Application
Development (RAD).

The milestones specified in the process model in Chapter 3, The Migration Process, should be
considered review and synchronization points rather than freeze points. The milestones give the team a
tangible goal to work toward, as well as a time to make adjustments, if necessary. In the process model,
a milestone concludes each phase. To promote objective measures, each milestone should be easily
quantifiable and correspond to the completion and approval of a project deliverable.

Starting the Migration Project

Initiation of a migration project provides a starting point for subsequent activities. Ideally, the project
would have been initiated right at its start, before assessment and analysis have taken place. However, it
is only during these analysis activities that you can determine the full picture of what needs to be done.
Even if a project start-up did take place before the assessment stage, it is essential to revisit startup
activities following assessment and analysis.

Project startup enables you to:

l Explain and clarify the planned intentions and deliverables of the project, so that you can manage
the expectations of the project stakeholders.

l Ensure that the requirements are well defined and bounded; otherwise, other application elements
may be drawn into the migration causing it to overrun.

l Confirm objectives and timescales for the migration, so that you can manage expectations, recruit
appropriate resources and allocate tasks as necessary.

It is quite possible that a number of migration projects are identified; for example, one for back-end
databases and one for specific user-facing applications. In this case, the project startup enables each
project to be defined and any dependencies to be identified so that the migrations can take place as
independently as possible.

The end of the initiation phase is marked by the completion of the first milestone where the migration
team and the customer agree on the overall vision and scope of the project. The vision is the complete
view of what the solution can be—the refinement of the original "bright idea." On the other hand, the
scope establishes restrictions on the vision to establish what can be accomplished within the constraints
of the project. In a way, creating the vision and determining the scope are opposites, but both pieces are
required for a successful project.

Page 2 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

For migrations from UNIX to the Microsoft Windows® operating system, the vision is having an
existing UNIX application work on the Windows platform. The application may include compiled
application specific code and libraries that are used by the application. Many UNIX procedures also
include scripts that tie parts of the application together into an overall process. Part of defining the vision
is determining which parts of the overall process must be migrated now, and which can be done later.

Choosing a Project

The business case for the migration is based on output from assessment and analysis; this enables you to
investigate migration options and decide on a suitable approach. The business case can now be used to
agree on the goals for the migration, selecting from any alternatives that might still exist (for example,
whether a package should be bought). This maps onto the envisioning phase of a software development
project, where the team decides on the direction of the project (the vision) and determines its exact goals
in the form of a vision/scope document. You can assign success criteria to each goal, agreeing on these
with the project stakeholder or user representative to provide a basis for agreement when the project is
complete.

The sponsor of the project begins this process by establishing a clear understanding of who the customer
is and who the end users are. The customer pays for the migration and the end users use the ported
application. The customer may be a person or persons in management who have an interest in the
project, or the customer may be another group within the corporation that wants to see the results of the
migration process. The end user may or may not be in the same organization as the customer. For
example, the customer may be information technology management that is interested in cost savings
while the end users may be engineers or help desk personnel.

There are a number of activities that make take place during the project, such as:

l Deploying tools and building a development and/or a pilot environment
l Testing the migration or porting techniques by selecting a large enough source base and a

complex enough build environment
l Running a prototype or pilot to verify the migration approach, to test tools and procedures and to

build confidence in the planned solution

Each activity has a bearing on overall success of the migration process. In particular, you should handle
prototyping activities carefully. Prototypes set the tone and expectations for the rest of the migration.
Because of this, it is very important that the experience be positive and successful for the organization.
A prototype project should be initiated as a test case for the larger migration project—this enables you to
affirm that the staff, techniques and procedures are all up to the task.

The vision/scope document ensures that everyone on the team shares and understands the goals of the
project. This allows each team member to work effectively toward the project's successful completion.
Each team member can make his or her own decisions without consulting other team members or
slowing progress with time-consuming meetings. While it may seem like overkill to have a detailed
project framework for what may amount to a very simple project, keep in mind that the project may set
the stage for larger and more complicated efforts. Any tools, environments and procedures you use have
a lifetime beyond the migration itself, because they must support the application after it is ported.

Confirming the Scope

A primary deliverable of the planning phase is the functional specification. This describes the

Page 3 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

requirements to be met by the migrated application and the way that these requirements are to be
achieved. This may be as simple as getting the code to compile and run or it may involve extensive
modifications to the source. Because the specification provides a foundation to measure results against,
the importance of documenting the operational details of the planned application cannot be
overemphasized.

Creating the scope of the effort includes determining which pieces should be converted and the way that
the conversion is to take place. Options include using migration tools to run the scripts as-is, converting
to a platform-independent language such as Perl, and porting the working pieces to run in a Windows
scripting or compiled language. The team must determine whether the application must be maintained
on both platforms. If so, this somewhat restricts the choices and the ability to take advantage of
Windows platform features.

The scope of your project ultimately depends on the resources you have available to complete it.
Accordingly, there are a variety of ways that you can envision the scope of the migration, for example:

l Do you merely want to see if the applications can be installed and launched properly? Or do you
want to check further for specific functionality and performance?

l Do you want a thorough investigation of any problems? Or does it suffice just to make note of
them and move on?

l Do you want to test every application currently running on the UNIX platform? Or do you want to
focus only on the top priority applications?

After the functional specification is compiled, you can review it against the vision/scope document for
scope creep (that is, expansion of the scope). It is important to confirm that the specification does not go
beyond the vision/scope that the team agreed to. Otherwise, the project is in danger of not being
delivered within the time and budget constraints.

If the functional specification extends the vision/scope document, the teams must invoke change
management procedures to determine whether the changes are required and if the project can be
extended. Otherwise, after all of the teams agree on its content, the document should be signed by the
team leaders.

Setting Expectations and Deliverables

Confirmation of the scope and the functional requirements on the migration project are only two facets
of the initiation triangle; the third facet involves setting the expectations of the team and the customer.
The actual deliverables and other less tangible results combine to make up the expectations for the
project, the lack of which can doom a project to failure. When the customer or management is expecting
one thing and the team delivers another, astonishment is usually the result. It is advisable to have all of
the parties agree on what the project will and will not accomplish.

The best way to ensure realistic expectations from both sides is to set out the success criteria for each
deliverable. You can do this by considering the functional requirements in the specification and defining
a measurable criterion against which the requirement can be judged. These may be straightforward, such
as "ensure message can be communicated between system A and system B," or more complex involving
a series of steps. It may not be possible to determine criteria for every requirement—for example,
scalability and availability requirements are notoriously difficult to gauge. However, you should have
reasonably complete coverage of all of the requirements, and you should agree on these with the
appropriate stakeholders.

Page 4 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The success criteria that you define should link back to the objectives set for the project. Perhaps your
organization is experiencing lower returns on its information technology investments as well as rising
administrative costs, or perhaps your personnel are tired of administering multiple platforms and want to
simplify the environment. Whatever the case may be in your situation, the success of your project
depends on being clear about your organization's specific needs and objectives.

As a group, you can agree on the criteria for success that allows you to determine whether an application
can be feasibly migrated to Windows. Each application to be migrated to Windows should demonstrate
feasibility (pass or fail) in four areas:

l Feature/functionality. The application must have the same features and functionality on the
Windows platform as it does on UNIX. This test focuses on the primary features and functions, as
defined by the users and their specific criteria.

l Multitasking. The applications identified need to operate in an environment conducive to user
multitasking. During testing, additional applications should be launched to check of the ability of
the application to share processor cycles.

l Interoperability. You may need to demonstrate that Windows users and UNIX users can coexist
on the network, exchange files and otherwise collaborate on projects without the burden of a
complicated file-conversion process.

l Performance. Compared to their speed on UNIX, applications must run as fast, if not faster, on
Windows. You can measure performance using benchmarks where possible, or base tests on
subjective analysis where no benchmarks are available.

Delivery of an agreed set of criteria marks the end of the initiation phase and the beginning of the
project itself.

Cataloging and Managing Risks

Risk is the possibility of suffering loss. The loss could be in the form of diminished quality of the
migrated application, increased development and/or support cost, missed deadlines or complete failure
to achieve the mission and purpose of the project. In other words, a risk is a problem waiting to happen.
It is recommended that the MSF approach to risk management be adopted, as illustrated in Figure 1.
Risks, including potential showstoppers, can be identified and retired by identification, analysis,
mitigation plans, tracking and control.

Figure 1. The MSF approach to risk management

This type of risk analysis and planning is often referred to as risk driven scheduling. This type of
planning is of particular use in UNIX to Windows workstation migration, because of the overall scope

Page 5 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

of a migration.

Identifying Risk

Throughout the assessment stage, you will have been spotting and documenting issues surrounding the
migration. The issues may be business or technical, application or infrastructure specific. Before you can
create a realistic project plan, you must determine whether any of the issues pose a serious risk to the
project, and what should be done to minimize the probability of things going wrong.

In general, the more potential stumbling blocks—attitudinal, structural or otherwise—you identify ahead
of time, the easier it is for you to minimize the amount of time spent trying to resolve them during
testing.

Issues can be of a business, technical, application or infrastructure nature. You can now decide which
issues are risks to the migration project. Note that a complete set of risks now allows for a thorough
analysis later. You should make it clear that it is better to identify a risk and then determine it is of low
priority at the analysis stage, rather than discounting it earlier on. This ensures more complete coverage,
as well as reducing debate and demonstrating your willingness to listen to the project stakeholders.

Business risks

Effective risk management must consider the business environment in which the project operates. Many
information technology projects fail, not for technology or project management reasons, but because of
larger organizational pressures that are typically ignored.

Table 1 lists some examples of non-technical risk sources and possible consequences.

Table 1. Business risks

A major potential source of risk is the resistance to change by management, operations staff and users.
UNIX is an established platform that enjoys a high degree of loyalty from many of its users, especially
in terms of high-end applications, such as computer-aided design/computer-aided manufacturing
(CAD/CAM), engineering and software development. Those advanced users who have developed
custom functionality for their UNIX-based applications and tools through shell scripting may be
especially fond of it. Thus, it is also important to determine whether some people in the organization
might be biased against the project because of their devotion to UNIX. The following are questions that

Categories of risk sources Project consequences
Project resources Cost overruns

Schedule slips
Development process/environment Inadequate functionality

Poor product performance
Operational/Support environment Demoralized staff

Application instability through incorrect
administration
Insufficient physical space

End user Customer dissatisfaction
Lack of application support

Distribution of user base Deployment problems
Difficulties in training users

Page 6 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

should be addressed:

l How open is management to the idea of changing the environment?
l Is the value of the migration (that is, its benefits minus its costs) considered to be inadequate or

negative? This question can be addressed at the risk analysis stage.
l Which groups might resist migrating to Windows? Groups could be organizational or

geographical.
l Will users be open to the migration, open to it but with reservations, or totally opposed to it?

Additional risks may include unavailable personnel, and policy, procedural or legal issues. In addition to
the risks, migration projects also have constraints such as:

l Hardware lease expirations
l Migration timetables
l Resources availability
l Expected cost savings

Failure to achieve any of the constraints could also be construed as a risk.

Technical risks

The application's technical context can be a major source of issues and risks. The following questions
help you determine technical risks on the application migration:

l Is the way in which your systems and networks are administered going to present any difficulties?
l Does the required experience to perform the migration exist in-house, or is it available from

outside?
l Do you have adequate technical support from the application vendors?
l Are there any specific constraints on standards conformance or security requirements—for

example, is the application safety-critical?
l Would a delay to the migration cause any problems—for example, in terms of new technologies

or versions of software being released?
l What contingency and disaster recovery plans are in place, and how will they be impacted by the

migration?

Application risks

The application itself is a likely source of concern. You can identify potential risk areas by answering
the following questions:

l Is the existing application code and scripts of sufficient quality to be ported? You should include
configuration and installation scripts where these exist.

l How comprehensive is the existing development environment (for example, source control,
configuration, build, debugging and bug tracking)?

l Is current application performance considered sufficient by its users, and how will this be
impacted by the migration?

l Is there a shortfall between the existing application functionality and the needs of its users?
l Is the planned version of Windows too new for the UNIX application, or is the UNIX application

simply incompatible with Windows?
l Is the technical complexity of the planned solution a cause for concern?

Page 7 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Is backward compatibility required with the original application?

If you are porting a FORTRAN application, you should also consider the following risk areas:

l You will need a FORTRAN complier from a third party—is it compatible with other tools?
l Call level integration will likely be needed between FORTRAN and C/C++ code.
l A cross language build and debug strategy will be needed for Windows.

Infrastructure issues

The supporting infrastructure, and dependencies between infrastructure and application elements, can
also yield issues and risks. The following questions should be addressed:

l Is the current hardware infrastructure suitable for running Windows, and/or is replacement
hardware being sought?

l If the ported application is to exist in parallel with the UNIX application, will the two
infrastructures coexist without difficulty?

l Can the network support the testing requirements of the project, particularly performance and
scalability testing?

l Are there any dependencies with, or impacts on, other infrastructure elements, especially
proprietary systems and applications, languages or scripts?

l Does the application depend on third-party software that is incompatible with Windows?
l Do you require to switch off any infrastructure elements before, during or after the deployment of

the new application?

Additional risks may include configuration problems, driver incompatibilities, scheduling conflicts and
resource conflicts.

Risk Analysis and Mitigation

The risk analysis stage involves taking each risk in turn and determining its constituent parts. You can
consider a risk as being made up of:

l Description. The description must be in a language that the risk stakeholder (that is, who it
impacts) understands.

l Impact. The impact is the effect that the risk would have, if it happened.
l Probability. The probability is the likelihood of the risk becoming real.
l Severity. The severity is the scale of impact that the risk would have, if it happened.
l Cost. It may be possible to assign a specific cost to each occurrence of the risk.
l Mitigation. Mitigation is the actions to be taken to ensure the probability of the risk is reduced or

removed.

You can quantify risks in terms of both their probability and the severity that they would have. You
should determine mitigation actions for each risk that is one or more actions to ensure that the risk is
minimized or removed. Most risk factors can be mitigated with proper project management. However,
there are some risks that can quickly escalate into showstoppers.

Note that you can also use the mitigation to quantify the risk. For example, if a mitigation action is
easily implemented, it may be seen as worth doing even if the risk probability is low. Mitigations can be
classed as hard, medium or easy, based on the perceived degree of difficulty to resolve the issue with the

Page 8 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

stated solution.

Table 2 lists examples of issues that need resolution for the success of a migration project. Each issue is
listed along with a proposed solution or mitigation strategy. The issue is then classified using a severity
level defined as risk to the success of the project: high, medium or low—high severity means that the
issue is a project showstopper if there is no resolution. Low priority means there are other workarounds
or alternative solutions.

Table 2. Example issues

Note FORTRAN migration risks are best mitigated by first defining the Windows
development environment. This includes which FORTRAN compiler to use, and how to
integrate with C/C++ code or third-party libraries. Second, modularity of the FORTRAN
code combined with platform-specific feature extraction into a C/C++ compatibility layer
also enhances the ability of the code to migrate from UNIX to Windows. This is also
essential if the application needs to target both the UNIX and Windows platforms.

Managing the Risks

Issue Impact Mitigation Severity Implementation
Lack of support for
X11R6. (Interix
supports X11R5.)

Some of the
application's X
functionality could
be compromised

Verify applications
dependence on
Release 6.
Application may be
able to use X11R5.
X11R6 available
from Interop
Systems.

Low Easy

Motif 1.2 Requires 3rd-party
library

Use Motif 2.2 from
Interop Systems.

High Easy

Lack of support for
xrt widgets from
bluestone

Some of the
application's X
functionality could
be compromised

Verify applications
dependence on
bluestone's xrt
widgets vs. standard
X toolkit. Need to
verify availability of
widget for Interix.

Medium Medium

NIPC library needs
to be ported to
Interix subsystem

Could increase
time/effort required
to move the AT&T
NIPC library to
Windows/Interix.

Requires source
code from AT&T,
and assumes use of
standard UNIX IPC
mechanisms. Trail
port to Interix to
verify ported
functionality.

High Medium

Data complete
source code port to
Interix needs proof
of concept trial
port

Could increase
time/effort required
to move the MQSS
application to
Windows/Interix.

There were no
dependencies
discussed would
make this a difficult
port using Interix.

High Easy

Page 9 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Risks should be included in a common repository and reviewed on a regular basis. You should publicize
the top ten risks in the form of a risk assessment document. Not only does this ensure that everyone is
aware of the risks, it also shows how you are proactively managing the migration project.

You can re-assess risks, and identify new ones, at regular intervals on the project. An opportunity to do
this is at a milestone, where the reviews that take place should also incorporate a risk assessment. New
risks should be included in the risk register as they are identified, whether or not a risk review is taking
place.

However, note that there is no need for excessive risk management. Try to limit your risk assessment
document to a maximum of ten high-priority risks most likely to threaten the project. You can then
determine the additional contingency planning that is necessary at this point, taking into account the
timeframe and objectives of the project.

Creating a Project Plan

The migration project plan describes the overall migration effort by gathering detailed plans, including
development, test, training, deployment and end-user support plans, as well as the migration schedule. It
should take into account the type of migration to be performed, the issues raised (and their mitigations),
the funding provided and the availability and skill sets of the resources on the migration project.

The following sections describe each detailed plan and schedule.

Development Plan

The development plan describes how the development team will migrate the application. It describes
information about the tools, methodologies, best practices, sequences of events and so on. It includes:

l Design goals (for example, components, services and technologies of the solution from the
development team's perspective)

l Coding strategy (for example, rewrite vs. port, standards, tools, code re-use, libraries, things to
avoid, portability, testability)

l Programming model, which:
l Prescribes how the selected technologies will be used
l Sets design guidelines as the design foundation for component specification; this helps to

ensure consistency across the project
l Uses different considerations to address different aspects of the solution
l Provides a baseline for identifying potential technical risks

l Design and code review strategy (for example, comprehensive, formal review; casual, peer-based
review; independent, third-party review)

l Source control strategy (for example, project file structure, version numbering convention,
releases naming, installation programs/scripts, help files)

l Build strategy, which includes:
l How (automated and/or manual, "make" structure), when, and in what frequency (should be

performed on a regular and frequent basis)
l The person or group responsible for the build
l Test/feedback on the health of the build
l Whether the build strategy will be linked with progress monitoring
l The constraints on application builds

l Integration strategy; this includes how the different components will be integrated and how their

Page 10 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

capabilities (functionalities) will evolve, for example:
l Identify an optimal order to integrate the different modules and components.
l Coordinate the integration order with the construction order so that modules and

components are ready for integration at the right time.
l Define the integration strategy to facilitate the diagnosis of defects.
l Verify the components specification, to ensure smooth integration.

Test Plan

The test plan includes a testing strategy, the specific areas to be tested and the resources (hardware and
people) the test team requires to do its job. The various categories of tests include:

l Coverage testing (used primarily during the development phase)
l Testing every feature of the product (for example, functional test)
l Testing the code base of the product (for example check-in, build verification and regression tests)
l Usage testing (used primarily during the stabilizing phase)
l Integration testing (used to verify the correct interactions between components and other systems).

For integration testing, the test plan should cover:
l Synchronization and coordination between components (for example, UNIX and Windows

workstation data access by the migrated application)
l Data integrity (especially when intensive file record-locking is required)
l Features
l Usage scenarios

For more information about application testing and the test plan, see Chapter 12, Testing and Quality
Assurance.

Training Plan

The training plan includes a strategy and a plan for developing any necessary training materials for end
users, administrators and support personnel. It includes a document that describes the training to be
provided to members of the team to ensure that they have the capabilities to support the development
and deployment process. The training plan defines training objectives and the audience; it also provides
a training schedule that must be incorporated into the overall project schedule. The plan also describes
the training vehicles, materials and resources.

Deployment Plan

The deployment plan includes a strategy and a detailed plan that can be used to prepare end users and
operations personnel before and during deployment. It includes a document that describes all steps of the
deployment process and details about the planning organization, and realization of:

l Installation strategy
l Deployment mechanisms
l Resources
l Contingency plans
l Site survey
l Systems support

Support Plan

Page 11 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The end-user support plan includes a strategy and details for developing a document that identifies the
resources, processes and skills needed to ensure proper use of the system. It describes the different
elements of user support provided, which might include one or many of the following types of support:
such as:

l Reference manuals
l Online Help
l Online tutorials

There will be interdependencies between the support plan and the training plan, because some of the
materials may be the same.

Migration Schedule

A migration schedule can have several components. These can be technical, business or organizational
in nature. Common things to consider include:

l Windows versions
l Independent software vendor (ISV) release schedules
l Hardware lease expirations
l Hardware availability
l Resource availability
l Customer reorganizations

Keeping all of these dependencies in mind, visible project milestones need to be established. Clear
metrics should be established for each milestone, with a post mortem review performed after each
milestone.

Table 3 illustrates an example migration schedule.

Table 3. Example migration schedule

Each milestone should have a fixed date to keep the focus on the current task. A UNIX to Windows
migration often needs a jumpstart to get moving. You should pay extra attention in the early stages until
the migration gains the momentum to see it through to the finish.

Planning the Project Resources

It serves little purpose to have the most comprehensive and well-considered migration plan in the world
if you don't have the time and resources to implement it. It is unlikely that infinite resources are

Page 12 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

available, so migration activities are bounded by available effort and financial support. Understanding
the overall objectives, being aware of potential benefits and being clear about what you must produce as
a result of the migration project gives you the foundation you need to determine the resources and skill
sets you need to complete the project successfully in the time allotted.

The resources and funds available to the project may already have been fixed by the project sponsor. If
not, you should determine available physical and human resources at this stage so that you are aware of
the resources and funds you have to begin with.

Sizing the Effort

During the assessment and analysis phase, you will have produced a business case that determined (in
broad terms) the amount of effort required for the various options available to you. You can now decide
whether to conduct a more detailed sizing study or to press ahead with the project based on the broad
figures.

Migration projects are notoriously difficult to size, even with the most in-depth study. An appropriate
strategy is to consider the migration as a series of deliveries, each corresponding to a subset of the
requirements. The most essential requirements (and those on which they depend) should be part of the
first delivery, with subsequent deliveries corresponding to less urgent requirements. This ensures that, if
the project runs out of time or money, at least the significant requirements are dealt with. In addition, it
may be possible to deploy the essentials of the migrated application early, so that its users can derive
early benefits. Even if they cannot use the full application, the core migrated application can be used for:

l User training
l Early validation of user requirements
l Scalability and performance testing

Time is one of the most important factors in determining the scope and quality of any project. Among
the questions you need to consider are:

l Do you have (for example) three months, three weeks or three days to get the job done?
l How much time can you apportion to planning?
l How much time must you dedicate to testing?
l How much time can you set aside to deal with unforeseen issues?
l How long will it take to produce a final deliverable?
l What additional resources may be available from outside the project; for example, could users be

deployed as testers?

Picking the Team

Early in the project cycle, the people who will make up the overall project team must be chosen. This
obligation is somewhat separate from the process phases of envisioning, planning, development and
testing. Nevertheless, the team members should be chosen in the envisioning phase or early in the
planning phase so that their input can be beneficial to the overall process.

Whether the team is large or small, the MSF team model prescribes six goals for success. Every team
must strive for:

l Satisfied customers

Page 13 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Delivery within project constraints
l Delivery to specifications that are based on user requirements
l Release only after addressing all known issues
l Enhanced user performance
l Smooth deployment and ongoing management

The overall project team is divided into functional teams that interact with each other as peers, not in a
hierarchical management-style structure. Each functional team and each team member has a well-
defined role and a specific mission on the project. The functional teams are product management,
program management, development, testing, user education and logistics management.

The roles of the team model correspond directly to the six quality goals for an effective project team.
Each team is responsible for assuring that one of the goals, the team goal, is completed, as follows:

l Product management has the goal of assuring satisfied customers. Customers of the migration
project include the sponsor who is paying for the migration and the end users of the application
being ported.

l Program management is charged with delivery within project constraints. To meet this goal,
program management owns and drives the schedule, the features and the budget for the project.
As discussed earlier, there may be multiple, interdependent migration projects; and there will
certainly be multiple deliveries within each project.

l Development must deliver the project to meet the product specification, which is based on
customer requirements. The developers are the team members responsible for porting the
application itself.

l Testing assures that the project releases only after addressing all issues. A migration issue is
anything that prevents the migrated application from meeting its requirements. The testing team
owns the testing process, test strategies, test plans and the testing schedule.

l User education is charged with producing enhanced user performance so that users have
increased productivity from using the product. There are specific pressures on user education from
the migration project, especially because of the potential for resistance to change.

l Logistics management focuses on smooth deployment and ongoing management. It acts as the
advocate for operations, product support, help desk and other channels linked to the deployment
of the migrated application.

Depending on the size of the project, team and individual roles may be shared by more than one person
on a team, may be given to an individual, or one person may have several roles. For larger projects, each
role may be assigned to a single person or a team of people with a team lead. For very small projects, a
small number of people may take several roles within the framework.

For further information, see the Microsoft Solutions Framework.

Subject Matter Experts

Having the right people involved with the project from the first day is a key factor for its ultimate
success. The people that need to be involved include:

l A sponsor who will champion the project with management and the customer
l Technical experts from each area of the application including source, the build procedures and

scripting
l An information technology infrastructure expert who understands security, connectivity and

Page 14 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

installation issues
l A testing expert who understands the functionality of the application
l Developers who are experienced in either or both UNIX and Windows platforms

Having a sponsor from upper management helps promote the project to management and the customer.
Because the sponsor is one of their own, the corporate decision makers are much more receptive to input
from that person. The sponsor is also in a position to help if roadblocks or problems arise that can be
solved only at the executive level. The product management role should be taken by the sponsor, if
possible.

Technical experts with UNIX knowledge are responsible for analyzing the application sources,
makefiles and scripts to determine their cross-platform compatibility. Along with experts from the
Windows side, they are also instrumental in making any modifications necessary to get the code running
on the Windows platform. The role of the technical experts from both disciplines is to make architecture
decisions and to implement required changes. The technical experts fill the development role and may
be in other roles.

An expert from information technology assures that infrastructure issues do not derail the migration
effort. This person must know about security within the organization and the steps that are necessary to
give the team required access rights. The developers need to be able to get sources and run tools on both
platforms. The end users will need to run the finished product and have access to any shared resources
such as databases. The information technology expert may also be required at the beginning of the
project to deploy application development and productivity tools. The information technology expert
fills the logistics management role.

A testing expert allows the team to meet the goal of releasing only after addressing all issues. The
testing expert formulates the test plan for the migrated application. Because developers make
notoriously bad testers, a person not on the development team must fill the testing role.

The ideal skill set for a developer working on the migration project is a mixed background in both UNIX
and Windows development. The primary software development skills required are:

l Development languages (for example, C, C++ and/or FORTRAN)
l Build and runtime environments (for example, make, gmake, ksh, csh)
l UNIX skills covering the architecture being ported (for example, X/Motif GUI, IPC-based

services)
l Win32 development skills (if very much of the code will be redesigned/rewritten)

Other important skills include a background in porting and other specific skills, depending on the nature
of the application (for example, GUI or client-server development skills).

Training the Team

Team members that don't have all of the required skills should get training before the project
implementation starts. This type of concern is usually in the areas of development and/or logistics
management. The exact training required depends on the nature of the migration project; for example, if
the migration will be to port an existing application, then the appropriate training would be for the
development environments, such as Microsoft Visual Studio® development system or Microsoft Visual
C++® development system. Training in the Windows application programming interfaces (APIs) would
also be helpful. Similarly, if you plan to use third-party tools either to aid in the port or as development

Page 15 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

libraries, then training from the vendor may be required.

If the migration from UNIX to Windows is using the Interix subsystem, then the team needs to
understand the capabilities of Interix. The key here is to understand the differences between Interix and
the version of UNIX that currently hosts the application. Because Interix is not UNIX, there is a chance
that some issues will arise.

Training is available from Microsoft Certified Technical Education Centers (Microsoft CTECs) in many
cities around the world. These centers offer instructor-led courses to teach you about all aspects of the
Windows platform. Some useful material is also available online in Web format and in self-paced book
or CD format from Microsoft Press.

Planning Execution

To ensure a successful migration, a number of techniques should be carried out throughout the migration
project. These include:

l Milestones and checkpoints, to ensure that the project plan is followed and to reveal any risks as
they arise

l Frequent delivery, to enable quality checks and to exercise the migrated software
l Metrics, to provide visibility on project progress

At the end of the project, you should conduct a closedown review to ensure that any valuable lessons
that have been learned are documented and to check off any completion actions, such as final sign-off of
deliverables and archiving of documents and earlier software versions.

Milestones and Checkpoints

The migration process should be based on milestones and checkpoints or review points. Milestones are a
definite, scheduled point in time when a material object must be delivered. Frequent checkpoints verify
that the team is making progress toward the goal of delivering the completed software.

The shorter the project, the more often you should have a checkpoint or review to assess progress. For
example, during a two-week project, there should be short, daily reviews at the very least. The sooner
you correct a problem, the easier it is to fix and the more time you have to devote to delivering the full
functionality on time. If this seems extreme, think about a year-long project, which would typically call
for weekly status meetings. That would be fifty-two meetings over the course of the project. For a two-
week project, daily meetings would amount to a total of only ten. Percentage-wise, the project is allowed
to go much farther between checkpoints.

Frequent Delivery

Each stage of the project should have one or more concrete deliverables, each of which is appropriate for
that stage of the migration. The milestone for each phase is the completion of the deliverable item. For
example:

l Assessment and analysis. The deliverable of this phase is a business case that is supported by a
comprehensive set of analysis results.

l Planning. The deliverable of this phase is a functional specification, migration plan and risk
catalog.

Page 16 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Development environment. The deliverable of this phase is a working environment, with code
imported and ready to migrate.

l Development. The deliverable of this phase is the completed code, which compiles to result in a
working, testable application.

l Testing. The deliverable of this phase is an application that conforms to its specification with all
appropriate bugs addressed.

l Deployment. The deliverable of this phase is a statement of user satisfaction.

Larger migration projects have multiple deliveries from the development phase. Product release is the
final project milestone that culminates the testing and deployment phase. This means that the project is
complete and that the vision has been achieved. The next phase, closing down the migration project, is
actually the beginning of the next loop in the life cycle of projects.

Two additional techniques used by Microsoft are doing daily builds and using the software being
developed which is known as "eating your own dog food." Doing daily builds of the entire code base
ensures that no problems have been introduced that prevent the whole system from begin created. Eating
your own dog food means that the developers exercise the new software every day. Clearly these
techniques may be difficult to apply early in the migration process, which relies on the migration of the
build environment. However, the number of builds and the use of the resulting application should
increase throughout the migration.

Project Metrics

Having the team define and track metrics is another procedural item that can help with tracking
progress. It is common to measure items such as function points, requirements achieved, bug counts or
number of lines of code written or converted. The development and testing teams should pick a set of
metrics that are useful in tracking migration progress. To be useful to the whole team, these metrics
should be made available on a regular basis. Whether this is done through e-mail messages, a team
intranet Web site, a share on a server or by other means, is up to team members. Whatever the choice, it
should fit into their normal routine so that the process of checking the figures is a natural extension of
their work habits.

Do users expect a summary document, a detailed report of the test cases or a recapitulation of the
testing, test results and migration strategy? Further, do they expect any progress reports as you carry out
your testing? Knowing what you need to produce from the testing helps you to focus and structure your
approach to the testing itself.

Closing Down the Migration Project

At the completion of the migration project, the project team should analyze the results and produce
documentation that can be used in subsequent migrations. The documentation may include a paper that
describes what was done and what happened. The paper should include details of which things worked,
but more importantly, it should include information about what did not work as expected and what was
done to fix the problems. For example, the report should include information about significant porting
problems such as:

l Availability of required tools (compilers, debuggers, analysis)
l Lack of third-party libraries (math, X Windows)
l Infrastructure issues, including file access security
l Makefile issues

Page 17 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Script usability
l API migration issues

In addition to creating documentation, program management may want to create presentations for the
customer or upper management.

As the final action to conclude the project, the team should decide how to proceed in the future. The
next step is often the beginning of another project with the team envisioning the migration of other,
larger applications. If the migration project runs into significant issues, the team should address these
through use of prototyping before beginning a more complex migration. With the prototype project
completed, the organization can begin moving significant, line of business applications to the Windows
platform. By following the framework for software development, the organization has valuable
experience in both the tools required and the process for migrating from UNIX to Windows.

Send feedback to Microsoft

© Microsoft Corporation. All rights reserved.

Page 18 of 18Chapter 5: Planning the Migration

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

