
UNIX Application Migration Guide

Chapter 2: UNIX and Windows Compared

Larry Twork, Larry Mead, Bill Howison, JD Hicks, Lew Brodnax, Jim McMicking, Raju Sakthivel,
David Holder, Jon Collins, Bill Loeffler
Microsoft Corporation

October 2002

Applies to:
 Microsoft® Windows®

UNIX applications

The patterns & practices team has decided to archive this content to allow us to streamline our latest
content offerings on our main site and keep it focused on the newest, most relevant content. However,
we will continue to make this content available because it is still of interest to some of our users.
We offer this content as-is, without warranty that it is still technically accurate as some of the material is
undoubtedly outdated. Note that the content may contain URLs that were valid when originally
published, but now link to sites or pages that no longer exist.

Summary: Chapter 2: UNIX and Windows Compared provides the technical background behind the
evolution of UNIX and Windows, pointing out the differences and similarities between the two
platforms. It also looks at background technologies that can form part of your migration or coexistence
plans. (38 printed pages)

Contents

Introduction
Windows Evolution and Architecture
UNIX Evolution and Architecture
Comparison of Windows and UNIX Architectures
Conclusion

Introduction

The UNIX Application Migration Guide was developed to help you migrate UNIX applications to the
Microsoft® Windows® operating system. This guide provides the information you need to plan and
budget your migration. It also examines methods for carrying out the migration and provides guidelines
on implementing and managing the final product.

UNIX Code Migration Guide

Page 1 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

By migrating your application to the Windows platform, you benefit from a widely-used, full-featured
operating system that runs the most popular business applications. With the addition of native UNIX
packages such as Microsoft Interix, Windows can run many UNIX applications with a minimum of
migration effort. The combination of the Windows platform and the Interix subsystem provides
customers with a single enterprise platform on which they can run all of their Windows, UNIX-based,
and Internet applications.

This guide is appropriate for managers, architects, and developers involved in the process of migrating
an application from UNIX to Windows. Individual chapters cover the different aspects of the
migration—including analysis, planning, porting of code, and testing of the migrated application.

This chapter gives an overview of the development and production environments in both Windows and
UNIX. However, before you begin to plan your migration, it is important that you have a good
understanding of both operating systems, their terminology, and the key differences between them.

Windows Evolution and Architecture

In the late 1980s, Microsoft began to design a new operating system that could take advantage of
advances in processor design and software development. The new operating system was called
Microsoft Windows NT® (for new technology). The current Windows 2000 and Microsoft Windows XP
operating systems are based on Windows NT.

Figure 1 illustrates the evolutionary development of the Windows family of operating systems,
culminating in today's Windows XP and soon in Microsoft Windows Server 2003. Windows XP is built
on the robust and high-performance Windows NT kernel and incorporates many of the best features of
Microsoft Windows 98 and Microsoft Windows Millennium Edition (Windows Me). These features
include Plug and Play support, an intuitive user interface, and many innovative support services.

Figure 1. The evolution of the Windows family of operating systems

Page 2 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Windows NT Architecture

Windows NT architecture uses two processor access modes: user mode and kernel mode.

User mode includes application processes (typically Microsoft Win32® programs) and a set of protected
subsystems. These subsystems are referred to as protected because each one is a separate process with
its own protected virtual address space. The most important subsystem is the Win32 subsystem, which
supplies much of the Win32 functionality to 32-bit Windows applications. The Windows subsystems,
including the Win32 subsystem, are discussed in greater detail later in this chapter.

Another important subsystem, particularly with respect to UNIX applications, is the POSIX subsystem.
POSIX stands for Portable Operating System Interface for computing environments, and consists of a
set of international standards for implementing UNIX-like interfaces. POSIX began as an effort by the
IEEE community to promote the portability of applications across different versions of UNIX. However,
POSIX is not limited to the UNIX environment and has been implemented on a number of non-UNIX
operating systems, including Windows NT. The POSIX subsystem implements these standards-based
interfaces, and allows applications developers to more easily port their applications to Windows from
another operating system.

Kernel mode is a highly privileged mode of operation where program code has direct access to all
memory, including the address spaces of all user mode processes and applications, and to hardware.
Kernel mode is also known as supervisor mode, protected mode or Ring 0. The kernel mode of
Windows NT contains the executive as well as the system kernel. The executive exports generic services
that protected subsystems call to obtain basic operating system services, such as file operations,
input/output (I/O), and synchronization services. Partitioning of the protected subsystems and the
executive simplifies the base operating system design and makes it possible to extend the features of an
individual protected subsystem without affecting the kernel. The kernel controls how the operating
system uses the processors, and performs operations such as scheduling, multiprocessor synchronization,
and providing objects that the executive can use or export to applications.

Figure 2 is a high-level illustration of Windows NT architecture.

Page 3 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 2. Windows NT architecture

The Windows operating system supports the following features and capabilities:

l Multitasking
l Choice of programming interfaces (subsystem and kernel application programming interfaces

[APIs])
l Emphasis on graphical user interface (GUI) for users and administrators (the default user interface

is graphical)
l Optional command-line interface
l Built-in networking (Transmission Control Protocol/Internet Protocol [TCP/IP] is standard)
l System services are provided by Windows Services
l Single compatible implementation

UNIX Evolution and Architecture

In 1969, Bell Laboratories developed UNIX as a timesharing system (the term used at that time to
describe a multitasking operating system that supported many users at terminals). Although the first
implementation was written in assembly language, the designers always intended for UNIX to be written
in a higher-level language. Thus, Bell Labs invented the C language so that they could rewrite UNIX.
UNIX has evolved into a popular operating system that runs on computers ranging in size from personal
computers to mainframes.

Figure 3 shows the evolution of UNIX from a single code base into the wide variety of UNIX systems
available today. In fact, this is only a summary–there are more than fifty flavors of UNIX in use today.
The codes on the diagram refer to the brands and versions of UNIX that are in common use, including:

l AIX from IBM
l Solaris from SUN Microsystems
l HP-UX and Tru64 from Hewlett Packard
l UnixWare from Caldera
l Linux and FreeBSD, which are open source products

For further information, please refer to Chapter 4.

Page 4 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 3. The history of UNIX implementations

UNIX became popular with computer manufacturers because it was written in a high-level language and
was thus portable. Computer manufacturers could buy the rights to the UNIX source and modify it to
make it run on their hardware. Although this portability greatly aided the acceptance of UNIX, it also
created incompatible versions, which became one of the greatest problems for the developers of UNIX
applications.

The architecture of UNIX can be divided into three levels of functionality, as shown in Figure 4. The
lowest level is the kernel which schedules tasks, manages resources, and controls security. The next
level is the shell, which acts as the user interface, interpreting user commands and starting applications.
The highest level is utilities, which provides useful utility functions. (For more information about the
shell, see the "Shells and Scripting" section later in this chapter.)

Page 5 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 4. Structure of the UNIX operating system

The UNIX operating system supports the following features and capabilities:

l Multitasking
l Multiuser
l Kernel written in high-level language
l Programming interface
l Use of files as handles to reference devices and other objects
l Large number of simple tools
l Use of pipes and filters to undertake complex tasks through simple tools
l Default user interface is character-based
l Built-in networking (TCP/IP is standard)
l System services are provided through daemon processes
l Wide number of vendor platform implementations

The following sections explain these features in more detail.

Comparison of Windows and UNIX Architectures

This section compares and contrasts the Windows and UNIX architectures, emphasizing those areas that
directly affect software development.

The areas covered in this section are:

Page 6 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Kernels and APIs
l Hardware drivers
l Processes and threads
l Virtual memory management
l File systems and networked file systems
l Security
l Networking
l User interfaces
l System configuration
l Interprocess communication (IPC)
l DLLs and shared libraries
l Component-based development
l .NET
l Middleware
l Shells and scripting
l Development environments

Kernels and APIs

As do most operating systems, Windows and UNIX both have kernels. The kernel is responsible for all
the basic functions of the operating system, such as:

l Creating files
l Starting processes
l Managing input and output
l Managing memory

In UNIX, the API functions are called system calls. System calls are a programming interface common
to all implementations of UNIX. In most implementations, the functions defined by the system calls are
the same; in some implementations, however, there are minor differences. Standards such as POSIX
include a definition of the implementation of system calls, in addition to other features.

Similarly, Windows has an API for programming calls to the executive. In addition to this API, each
subsystem provides a higher-level API. This approach allows the Windows operating systems to provide
different APIs, some of which mimic the APIs provided by the kernels of other operating systems. The
standard subsystem APIs include the Win32 API (the Windows native API) and the POSIX API (the
standards-based UNIX API).

Objects and handles

As a Windows developer using the Win32 API, you use kernel objects to manage and manipulate
resources such as files, synchronization objects, processes, threads, and pipes. Kernel objects are data
structures maintained by the operating system kernel. To interact with a kernel object (and its associated
resource), you must obtain a handle to the kernel object by calling the appropriate Win32 API.
Regardless of the underlying resource type, the procedure for manipulating kernel objects is as follows:

1. Obtain a kernel object handle.

For example, call the CreateFile function to open a file and obtain a file kernel object handle.

Page 7 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

2. Manipulate the resource by using the kernel object handle.

For example, call the ReadFile and WriteFile functions, supplying the handle as a parameter.

3. Close the handle when your work is complete.

Call the CloseHandle function, irrespective of the handle type.

Windows subsystems

A subsystem is a portion of the Windows operating system that provides some service to application
programs through a callable API. The subsystems run in separate processes and do not share virtual
memory. Therefore, a subsystem must send messages to another subsystem to communicate with it. All
messages pass through the executive, which performs a security check to guarantee that the subsystems
do not interfere with one another.

Subsystems come in two varieties, depending on where the request is finally handled:

l Environment subsystems execute in user mode and provide functions through a published API.
The best known environment subsystem is Win32, which provides an API for operating system
services, GUI capabilities, and functions to control all user input and output.

l Integral subsystems perform key operating system functions and execute as part of the executive
or kernel. The best known of the integral subsystems are the security subsystem and the virtual
memory manager. Other subsystems include the object manager, the process manager, and the I/O
manager.

The Win32 subsystem

The Win32 subsystem allows applications to benefit from the full power of the Windows family of
operating systems. Win32 has a vast collection of functions, including the capabilities required for
advanced operating systems, such as security, synchronization, virtual memory management, and
threads. By using the Win32 API, you can write applications that run on all versions of Windows while
taking advantage of capabilities that exist only on later versions.

The Win32 API is grouped into six categories:

l Base services

Base services are functions that let applications use the features of the operating system, such as
memory management, file systems, devices, processes, and threads. An application uses these
functions to manage and monitor the resources that it needs to complete its work. For example, an
application uses memory management functions to allocate and free memory. Process
management and synchronization functions start and coordinate the operation of multiple
applications or multiple threads within a single application.

l Common control library

A common control library implements a set of common controls shown as windows. Applications
use these controls to maintain consistency with the Windows shell and to maintain the distinctive
Windows behavior and appearance. Common controls range from fairly simple, such as combo

Page 8 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

box and status bar controls, to complex, such as calendar and tree view controls.

l Graphics Device Interface

The Graphics Device Interface (GDI) provides functions and data structures that applications use
to generate graphical output for displays, printers, and other devices. GDI enables applications to
draw geometric shapes, such as lines, curves, and closed figures and to manipulate text and
images. GDI allows the application to control visible attributes, such as color and style, when
drawing shapes and text. Applications can direct output to a physical device or to a logical device
such as memory or a metafile.

l Network services

Network services provide functions for network management and Windows networking (WNet).
Network management lets a systems administrator or network manager create and manage shared
resources, such as directories, network printers, and users. Windows networking functions enable
applications to query and control network connections and to retrieve information about the
current network configuration. These functions are independent of any network provider or
physical network implementation.

l User interface

User interface functions give applications the means to create and manage a user interface.
Applications use these functions to create and use windows to display output, prompt for user
input, and interact with the user. The behavior and appearance of windows that an application
creates are controlled by window classes and corresponding window procedures. A window class
defines default characteristics, such as whether the window processes mouse button clicks or has a
menu. The corresponding window procedure contains code that defines the behavior of the
window in response to events and user input.

l Windows shell

Windows shell functions enable applications to use the shell interfaces and to enhance various
aspects of the Windows shell. A context menu handler is a shell extension that modifies the
contents of a shortcut menu. The system displays a shortcut menu when the user clicks an object
with the right mouse button. The shortcut menu contains commands that apply specifically to the
object that was clicked. Most shortcut menus contain a properties command that displays the
property sheet for the selected object. A property sheet contains information about the object in a
set of overlapping or tabbed windows called pages. A property sheet handler is a shell extension
that adds pages to the system-defined property sheet. The system uses icons to represent files. The
default icon displayed is the same for all files with the same extension. An icon handler can
override the default and display a different icon for some files.

Note The APIs provided by different environment subsystems cannot be mixed. A
file opened in the POSIX subsystem is not compatible with the API in the Win32
subsystem. For this reason, you must use special techniques when linking different
subsystems.

The POSIX subsystem and Interix

Page 9 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Windows NT, Windows 2000, and Windows XP provide a fully standards-compliant subsystem that
supports programs written for the POSIX portable operating system environment. Programs written for
the POSIX environment on any other operating systems should perform in exactly the same manner on
Windows. Although the POSIX subsystem is standards compliant and provides the majority of the
system calls found in UNIX implementations, not all UNIX applications are POSIX compliant.

To add more comprehensive support for UNIX programs, Windows provides the Interix subsystem.
Interix is a multiuser UNIX environment for a Windows-based computer. Interix conforms to the
POSIX.1 and POSIX.2 standards. It provides all of the features of a traditional UNIX operating system,
including pipes, hard links, symbolic links, UNIX networking, and UNIX graphical support through the
X Window System (also called X Windows). It also includes case-sensitive file names, job control tools,
compilation tools, and more than 300 UNIX commands and utilities, such as KornShell, C Shell, awk,
and vi. See Chapter 10 for further information about Interix features and commands.

Because the Interix subsystem is layered on top of the Windows kernel, it is not an emulation; it is a
native environment subsystem that integrates with the Windows kernel, just as the Win32 subsystem
does. When you install Interix, you install a new extended subsystem that replaces the POSIX subsystem
provided with Windows and that provides true UNIX functionality. Shell scripts and other scripted
applications that use UNIX and POSIX.2 utilities run under Interix. (For more information about shell
scripts, see the "Shells and Scripting" section later in this chapter.)

These behaviors of the Interix environment are different from open systems:

l Interix has no superuser.
l Interix has different user authentication.

User and group information is stored in the Windows Security Access database. While the
database stores both users and groups, group names and user names must be unique; that is, no
group can have a user's name and vice versa. (This database replaces the /etc/passwd
and /etc/groups files or Network Information Service [NIS] map files in UNIX.) Users can belong
to many groups.

l Interix supports user name mapping.

Interix uses user name mapping to associate Windows users with user identifiers (UIDs) and
group identifiers (GIDs). Mapping allows the actual user and group names to appear as the file
owner and file group when a long directory listing is requested.

Hardware Drivers

The Windows Driver Model provides a platform for developing drivers for industry-standard hardware
devices attached to a Windows-based system. The keys to developing a good driver package are to
provide good setup and installation procedures and to provide interactive GUI tools for configuring
devices after installation. In addition, hardware must be compatible with Windows Plug and Play
technology to ensure a user-friendly hardware installation. If hardware manufacturers meet these and
other requirements, they can display the "Designed for Windows" logo on their packaging and
documentation.

In some versions of Windows, the user must reboot the computer after installing new hardware, drivers,
and peripherals. Windows XP, however, has features that eliminate the need to reboot if drivers are

Page 10 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

signed with a digital certificate. This certificate indicates that a driver has passed the Windows
Hardware Compatibility Tests, which ensure that the driver functions correctly with the Windows
operating system.

In UNIX, there are several different ways to manage drivers. Some UNIX implementations allow for
dynamic loading and unloading of drivers, whereas other implementations do not. The UNIX vendor
usually provides drivers. On Intel platforms, the range of supported hardware for UNIX is typically
smaller than that for Windows.

Process Management

Multitasking operating systems—such as Windows and UNIX—must manage and control many
processes at once. Each process has its own code, data, system resources, and state. Resources include
virtual address space, files, and synchronization objects. Threads are a part of a process; each process
has one or more threads running on its behalf. Like a process, a thread has resources and a state
associated with it. The Windows and UNIX operating systems both provide process and threads.

The following sections provide more detail on how UNIX and Windows manage processes.

Multitasking

UNIX was designed to be a multiprocessing, multiuser system. At any point in time, a user may have
many processes running on UNIX. Consequently, UNIX is very efficient at creating processes.

Windows has evolved from its beginnings on Microsoft MS-DOS®, which did not support preemptive
multitasking. As a result, Windows relies heavily on threads instead of processes. (A thread is a
construct that enables parallel processing within a single process.) Creating a new process in Windows is
a relatively expensive operation.

Multiple users

One key difference between UNIX and Windows is the implementation of multiple users on one
computer.

On UNIX, when a user logs on, a shell process is started to service the user's commands. The UNIX
operating system keeps track of users and their processes and prevents processes from interfering with
one another. Because all the processes run on the server, the resource demands on the computer can
grow quite large, especially with many users and large applications.

On Windows, when a user logs on interactively, the Win32 subsystem's Graphical Identification and
Authentication dynamic-link library (GINA) creates the initial process for that user, known as the user
desktop. This desktop is where all user interaction or activity takes place. Only a particular instance of
the logged-on user has access to the desktop. This allows the user to control the computing environment
(sometimes known as the shell). Other users are not intended to be able to log on to that computer at the
same time. However, if a user uses Terminal Services or Citrix, Windows can operate in a server-centric
mode similar to UNIX. (For more information about Terminal Services and Citrix, see the "Windows
Terminal Services and Citrix" section later in this chapter.)

Multithreading

Page 11 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Most new UNIX kernels are multithreaded to take advantage of symmetric multiprocessing (SMP)
computers. Initially, UNIX did not expose threads to programmers. However, POSIX does have user-
programmable threads. In fact, POSIX has two different implementations of threads, depending on the
POSIX version.

In Windows, creating a new thread is very efficient. Windows applications are able to use threads to
take advantage of SMP computers and to maintain interactive capabilities when some threads take a
long time to execute.

Fibers

Windows has another unit of execution, called fibers, which UNIX does not have. Fibers are sometimes
referred to as lightweight threads. Fibers must be manually scheduled by a thread, and they run in the
context of that thread. Fibers are usually used in applications that service a large number of users, such
as database systems. Fibers do not provide much improvement in speed over threaded applications, but
they do provide a good technique for porting applications that are designed to schedule their own
threads.

Process hierarchy

When a UNIX application creates a new process, the new process becomes a child of the creating
process. This process hierarchy is often important, and there are system calls for manipulating child
processes.

Unlike UNIX, Windows processes do not share a hierarchical relationship. The creating process receives
the process handle and ID of the process it created so a hierarchical relationship can be
maintained/simulated if the application requires it to do so. However, the operating system treats all
processes as belonging to the same generation.

Note Both Windows and UNIX processes (by default) inherit the security settings of the
creating process.

Signals, exceptions, and events

UNIX and Windows have mechanisms by which processes can indicate an event or error. In both
operating systems, these events are signaled by a form of software interrupts. In UNIX, these
mechanisms are called signals and are used for normal events, simple interprocess communication, and
abnormal conditions such as floating point exceptions. Windows has two separate mechanisms, as
follows:

l An events mechanism handles expected events, such as communications between two processes.
l An exception mechanism handles non-standard events, such as the termination of a process by the

user. Computer hardware may generate exceptions such as invalid memory access and math
errors. Windows uses a facility named Structured Exception Handling (SEH) to handle these
exceptions.

Filters and pipes

UNIX introduced a philosophy of computing that incorporates features known as filters and pipes. A
well-designed UNIX program gets its input from the standard input stream and writes its results to

Page 12 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

standard output. This makes the program a filter, analogous to a water filter or a filter in engineering.
The filter has one input and one output and performs an operation on information passing through it.
Pipes give users the ability to link these filter programs together so that the output of one program is fed
into the input of another. A typical use of this capability is sorting; that is, running one program that
generates some desired output and piping the output into the sort utility for viewing.

Daemons and services

In UNIX, a daemon is a process that the system starts to provide a service to other applications.
Typically, the daemon does not interact with users. UNIX daemons are started at boot time from init or
rc scripts.

A Windows service is the equivalent of a UNIX daemon; it is a process that provides one or more
facilities to client processes. Typically, a service is a long-running Windows application that does not
interact with users and consequently does not include a user interface. Services may start when the
system boots and they continue running across logon sessions. Services are controlled by the Service
Control Manager (SCM), and one of the few requirements for writing a service is that it must
communicate with the SCM to handle starting, stopping, and installing.

Because it runs in a separate process, a service runs in user mode with a specific user identity. The
security context of that user determines the capabilities of the service. Most services run as the Local
System account. This account has elevated access rights on the local computer but has no privileges on
the network domain. If a service needs to access network resources, it must run as a domain user with
enough privileges to perform the required tasks. On UNIX, a daemon runs with an appropriate user
name for the service that it provides or as the special user named nobody.

Summary of processes and threads

Table 1 summarizes the differences between Windows and UNIX in terms of processes and threads.

Table 1. Windows and UNIX processes and threads

Virtual Memory Management

Both UNIX and Windows use virtual memory to extend the memory available to an application beyond
the actual physical memory installed on the computer. In UNIX, virtual memory is handled by the
kernel; in Windows, virtual memory is handled by an executive service. Virtual memory uses a number
of techniques to:

l Inform the application that additional memory is available.

Feature Windows UNIX
Primary mechanism Threads Processes
Processes Yes Yes
Threads Yes Yes, but different implementations
Fibers Yes No
Performance Very good at creating threads Very good at creating processes
Process hierarchy No Yes
Security inherited Yes Yes (except setuid)

Page 13 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Transparently enhance system performance (and therefore application performance) by reading
for disk as efficiently as possible.

Virtual memory uses areas on disk to extend real memory. In addition, the virtual memory manager
moves program and data files from the hard disk into physical memory only when the files are needed.
Because virtual memory is managed by the operating system and is transparent to applications, there
should be no need to consider virtual memory during the migration process.

File Systems and Networked File Systems

This section describes the file system characteristics of UNIX and Windows. Table 2 shows the basic
features of modern file systems.

Table 2. File system characteristics

Both UNIX and Windows support many different types of file system implementations. Some UNIX
implementations support Windows file system types, and there are products that give Windows support
for some UNIX file system types.

File names and path names

Everything in the file system is either a file or a directory. UNIX and Windows file systems are both
hierarchical, and both operating systems support long file names with up to 255 characters. Almost any
character is valid in a file name, except the following:

l / in UNIX
l ?, ", /, \, >, <, *, |, and : in Windows

In UNIX, there is a single directory known as the root at the top of the hierarchy. You locate all files by
specifying a path from the root. The UNIX notation for file paths is a series of directory names separated
by a single slash mark, followed by the file or directory name. The root directory is named /, so a path
begins with /; for example, /etc/passwd. Paths can also be specified as relative to the current working
directory (which is represented as ".") or to the parent of the current directory (represented as "..").

Feature Description
File names User-defined name associated with the physical file,

typically 255 characters or more
Directories Named folders to store files in, usually arranged in a

hierarchical, tree-like structure
Path names Way of referring to a specific file or directory in a

particular place
Aliases, Links, Shortcuts Methods for pointing one file at another or giving a

file multiple names
Security Method of protecting and controlling access to files

and directories
File information Method of storing the properties of a file, such as

creation date, modification time, size, and location on
disk

Page 14 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

UNIX makes no distinction between files on a local hard drive partition, CD-ROM, floppy disk or
networked file system. All of the files appear in one tree under the same root. For this to work, UNIX
uses a process called mounting. New file systems (for example, a hard drive partition) are mounted on
an empty directory and then appear as a seamless part of the file system directory tree.

Windows can have many hierarchies; for example, one for each partition and one for each network
drive. Like UNIX, a path in Windows is defined by a series of directories and a file name. Unlike UNIX,
the separator is a backslash, and the drive name (for example, C or D) or UNC name (for example,
\\SERVER\SHARE) may also need to be specified. However, Windows can use "." and ".." just as
UNIX does.

UNIX file system features

UNIX treats all files as steams of data with no boundaries or structure. In UNIX, each file in the file
system is described by an inode. This differs from a file name, as it refers to the following information
about the file:

l Permissions
l Owner
l Type
l Date and time of creation and of last access and modification
l Size
l Pointers to the data blocks allocated to the file

The inode does not contain the name of the file. A directory contains the file names and associated
inodes. UNIX can also create hard links, which allow a file to appear in more than one directory with
more than one name.

In the UNIX file system, devices are also represented by files. Device files are usually found in the /dev
directory. For example, you can run a program and ignore all of its output by redirecting the output to
the null device, /dev/null. It is also possible to send data directly to a serial port or terminal by using this
technique. Some versions of UNIX even expose memory and running processes in this manner
(/dev/mem and /dev/proc, respectively).

Applications, not the operating system, handle file structures. This imparts a simplicity and uniformity
to input/output but can be a performance issue for large files or busy systems if not handled carefully.

Networked file systems

File systems do not have to be stored on a local drive (for example, a hard disk or CD-ROM). Users and
applications can access them over the network from a server or peer computer. To do this, the operating
system uses special file systems—called networked file systems—that work over the network.

The Network File System

The standard UNIX network file system is the Network File System. Developed by Sun Microsystems,
the technology is licensed to most of the UNIX vendors. NFS is designed to integrate into the UNIX file
system model. An NFS server exports a directory, and an NFS client then mounts that exported directory
just as it would a local file system. To the user, the networked file system appears to be just another part
of the directory tree.

Page 15 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

UNIX also has an automount mechanism. Automount directories are automatically made available when
an application attempts to access them. They are then unmounted after a period of inactivity. The
automount mechanism reduces the number of network file systems mounted and simplifies
administration.

NFS is a client/server implementation. The actions that are executed on the server are minimal. The
server does not keep any state associated with the client; all the state data is kept on the client. This
method of retaining state ensures that the server can perform quickly and efficiently but places many
requirements on the client.

Server message block and Common Internet File System

One of the earliest implementations of network resource sharing for the MS-DOS platform was network
basic input output system (NetBIOS). Features in NetBIOS allowed it to accept disk I/O requests and
direct them to file shares on other computers. The protocol used for this was named server message
block (SMB). Additions were made to SMB to apply it to the Internet, and the protocol today is known
as Common Internet File System (CIFS).

In Windows, the server shares a directory, and the client then connects to the UNC for that share. Each
network drive usually appears with its own drive letter, such as X.

Windows and UNIX Network File System interoperability

UNIX and Windows can interoperate by using NFS on Windows or CIFS on UNIX. There are a number
of commercial NFS products for Windows. For UNIX, in addition to commercial implementations of
CIFS, a software option called Samba is widely used. Samba is an alternative to installing NFS client
software on Windows-based computers for interoperability with UNIX-based computers. Samba is an
open-source, freeware, server-side implementation of a UNIX CIFS server. To provide file and print
services, it implements security in the form of authentication and authorization. It also implements
NetBIOS-style name resolution and browsing.

Summary of file system differences

The preceding sections discussed the architectures of the UNIX and Windows file systems, which are
both hierarchical but differ in many details. Table 3 summarizes the differences between the Windows,
Windows with Interix, and UNIX file systems.

Table 3. Summary of file systems differences

Feature Windows Windows/Interix UNIX
Overall structure Hierarchal, multiple trees Hierarchal, single tree Hierarchal, single tree
Drive names Yes (C, D) Yes, under /dev/fs (for

example, /dev/fs/C)
No

Mounting partitions Yes Yes Yes
Path separator \ / /
Case-sensitive names No Yes Yes
Hard links No Yes Yes
Symbolic links No Yes Yes
Shortcuts Yes No No

Page 16 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Security

UNIX and Windows architectures differ in many ways, including security implementations. The
following subsections describe some of these security implementation details and differences.

User authentication

A user can log on to a computer running UNIX by entering a valid user name and password. Some
UNIX implementations require optional extra credentials, such as smart cards (for example, with
pluggable authentication modules on Solaris and Linux). A UNIX user can be local to the computer or
known on an NIS domain (a group of cooperating computers). In most cases, the NIS database contains
little more than the user name, password, and group.

A user can log on to a computer running Windows by entering a valid user name and password. In
addition, Windows can require optional credentials such as certificates and smart cards. A Windows user
can be local to the computer, known on a Windows NT domain or known in the Active Directory®
directory service. The Windows NT domain contains only a user name, password, and user groups.
Active Directory contains the same information as the Windows NT domain, and may contain contact
information for the user, organizational data, certificates and so on.

UNIX security

UNIX uses a simple security model. The operating system applies security by assigning permissions to
files. This model works because UNIX uses files to represent devices, memory, and even processes.
Security permissions are applied to users or to groups.

In most cases, users are people who log on to the system, but users can be special users such as system
services (daemons). In UNIX, each user has a UID, which (unlike in Windows) does not have to be
unique. A user is logged on to the system when a shell process is running that has that user's UID.
Groups are sets of users. A UNIX group has a GID. Every process has a UID and a GID associated with
it.

Note The credentials that a user supplies when logging on is usually a user name and a
password. Some implementations of UNIX support the use of smart cards for interactive
logon. Smart cards support cryptography and secure storage of private keys and certificates,
enabling the strong authentication of users.

Security permissions

When a user logs on to the system by entering a user name and a password, UNIX starts a shell with the
UID and GID of that user. From then on, all access to files and other resources is controlled by the
permissions assigned to the UID and GID or the process. The UIDs and GIDs are configured in two
files, /etc/passwd and /etc/group.

Network file system SMB NFS
Device files No Yes, with exceptions (for

example, /dev/mem)
Yes

Set user ID No Yes Yes
Security ACLs Mapping between bit

permissions and ACLs
Simple bit permissions

Page 17 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Each file in the file system has a bitmap that defines its permissions. The permissions grantable are read,
write, and execute. These permissions are grouped in three sets: the owner of the file, the owner's group,
and everybody else (world). A full (long) listing for a file shows the file permissions as a group of nine
characters that indicate the permissions for owner, group, and world. The characters r, w, x, and - are
used to indicate read, write, execute, and no permission, respectively. For example, if the owner of a file
has all permissions but the group and world have only read permission, the string is as follows:

rwxr--r--

Note Some UNIX implementations have extended the basic security model to include
access control lists (ACLs) similar to those used in Windows. However, ACLs are not
implemented consistently across all versions of UNIX.

Effective UID and effective GID

There are occasions when a process started by a particular user must access resources that the user does
not have permissions to access. UNIX has a mechanism to handle this situation. Processes can have
effective UIDs and GIDs that are different from the UID, the GID, and the parent process. An effective
UID or GID is one that the operating system uses for the duration of the process.

Network Information System

The UNIX operating system was originally designed to run on a server by itself and not on a network, in
a manner similar to stand-alone Windows-based computers. When computers can access resources on
other computers on a network, synchronization of users (UIDs) and groups (GIDs) across computers
becomes a problem. If the numerical identifiers are not properly synchronized, access requests across the
network could incorrectly identify the user or group, which would result in a security breach.

The Network Information System (NIS) solves this problem by using a client/server model for
processing requests. One computer on a domain is designated the master computer. Computers that
serve as backups to the master are known as subordinate computers. All other computers on the domain
are clients. When a client application must check credentials, the call is forwarded to the master
computer, instead of being processed locally as it would on a computer not running NIS. The master
looks up the user information in a database file called a map and returns the results.

Windows security

Windows uses a unified security model that protects all objects from unauthorized access. The system
maintains security information for:

l Users. The people who log on to the system, either interactively by entering a set of credentials
(typically user name and password) or remotely through the network. Every user's security context
is represented by a logon session. Each process that the user starts is associated with the user's
logon session.

l Objects. The secured resources that a user can access. For example, files, synchronization objects,
and named pipes represent kernel objects.

Figure 5 illustrates the Windows security model and the relationship between the process-level access
token, the object's security descriptor, and the DACL for the security descriptor.

Page 18 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Figure 5. The Windows security model

Access tokens

An access token is a data structure associated with every process that is started by a particular user (and
is associated with that user's logon session). The access token identifies who the user is and what
security groups he or she is a member of. Although users and groups have human-readable names to
ease administration, they are uniquely identified internally (for performance reasons) by security
identifiers (SIDs).

Security descriptors

A security descriptor describes the security attributes of each object. The information in the security
descriptor includes the owner of the object and a discretionary access control list (DACL). The DACL
contains a list of access control entries (ACEs) that define the access rights for particular users or groups
of users. The owner of the object controls the DACL and uses it to determine who should and should not
be allowed access to the object, and what rights they should be granted.

The security descriptor also includes a system access control list (SACL), which is controlled by system
administrators. Administrators use SACLs to specify auditing requirements for object access. For
example, an administrator can establish a SACL that specifies the generation of an audit log entry
whenever a user attempts to delete a particular file.

The sequence of events from the time a user logs on, to the time he or she attempts to access a secure
object, is as follows:

1. The user logs on by entering a set of credentials. The system validates these credentials by
comparing them against information maintained in a security database (or Active Directory).

2. If the user is authenticated, the system creates a logon session that represents the security context
for the user. Every process created on behalf of the user (starting with the Windows shell process)
contains an access token that describes the user's security context.

3. Every process subsequently started by the user is passed a copy of the access token. If one process
results in additional processes, all child processes obtain a copy of the access token and are
associated with the user's single logon session.

4. When a process (acting on behalf of the user) attempts to open a secure object such as a file, the
process must initially obtain a handle to the object. For example, when attempting to open a file,
the process calls the CreateFile function. The process specifies a set of access rights on the call to
CreateFile.

Page 19 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

5. The security system accesses the object's security descriptor and uses the list of ACEs contained
in the DACL to find a group or user SID that matches one contained in the process's access token.
When this task is complete, the user is either denied access to the object (if a deny ACE is located)
or the user is granted a specific set of access rights to the object. The granted rights may be the
same as the rights initially requested or may be a subset of the rights initially requested. For
example, the CreateFile call can request read and write access to a file, but the DACL may allow
only read access.

Impersonation

When a thread within a process attempts to access a secured object, the security context that represents
the user making the access attempt is normally obtained from the process-level access token.

You can, however, associate a temporary access token with a specific thread. For example, within a
server process, you can impersonate a client's security context. The act of impersonation associates a
temporary access token with the current thread. The temporary impersonation token represents the
client's security context. As a result, the server thread uses the client's security context when it attempts
to access any secured object. When the temporary access token is removed from the thread,
impersonation ceases and subsequent resource access reverts to using the process-level access token.

Active Directory

Windows 2000 introduced Active Directory, a directory service that is used to store information about
objects. The objects can include users, computers, printers, and every domain on one or more wide area
networks. Active Directory can scale from a single computer to many large computer networks. Active
Directory provides the store for all domain security policy and account information. It replaces the flat
account namespace in earlier versions of Windows with a hierarchical namespace for user, group, and
computer account information.

Windows 2000 also introduced new authentication protocols based on Internet standards, including
Kerberos Version 5 and Transport Layer Security (TLS). For backward compatibility, Windows 2000
supports existing NTLM authentication protocols.

Windows implementation of secure channel security protocols (Secure Sockets Layer [SSL] 3.0/TLS)
supports strong client authentication by mapping user credentials in the form of public-key certificates to
existing Windows NT accounts. Administrators use common administration tools to manage account
information and access control, whether the administrators are using password authentication or
certificates. External users who do not have Windows 2000 accounts can be authenticated through
public-key certificates and mapped to an existing Windows account. This allows businesses to give
trading partners limited or full access to their internal network.

Networking

The primary networking protocol for UNIX and Windows is TCP/IP. The standard programming API
for TCP/IP is called sockets. Sockets were created for UNIX at the University of California, Berkeley.
Sockets provide an easy-to-use, bidirectional stream between systems across a network. The Windows
implementation of sockets is formally known as Windows Sockets but is usually called Winsock.
Winsock conforms well to the Berkeley implementation, even at the API level. Most of the functions are
the same, but slight differences in parameter lists and return values do exist.

Page 20 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

User Interfaces

The UNIX user interface was originally based on a character-oriented command line, whereas the
Windows user interface was originally based on a GUI. This difference is a result of the background of
the two operating systems. UNIX originated at a time when graphic terminals were not available;
Windows was (as the name suggests) designed to take advantage of advances in the graphics capabilities
of computers. However, both UNIX and Windows now support a mixture of character and graphical
interfaces.

The UNIX character-based interface

The standard UNIX shells and tools are all character based and command line oriented. For the UNIX
shells and UNIX-based applications to be able to communicate with different models of character
terminals, they must be aware of the different functions available and the command sets for each
terminal.

Termcap and terminfo

To minimize the amount of specific terminal information embedded in a program, UNIX has databases
of terminal capabilities; these databases are known as termcap and terminfo. Rather than embedding
terminal commands into an application, developers can use program libraries provided with the
operating system to query the database for specific movement commands, thus allowing their
applications to operate with a variety of hardware.

Curses

Another application development package specifically designed to alleviate the problem of terminal
dependence is the curses library originally written at the University of California, Berkeley. It is a set of
functions for manipulating terminal input and output (mostly output). These perform such actions as
clearing the screen, moving the cursor to a specific row and column, and writing a character or string to
the screen. There are also input functions to retrieve user input in various modes, such as read one
character and read a string terminated by carriage return. Curses and similar libraries enable developers
to create highly interactive, character-based applications, such as text editors.

X Windows and Motif

The standard windowing system for UNIX systems is the X Window System (or X Windows) developed
at MIT. X Windows is a platform-independent, basic windowing system. It consists of a lower level API
called X library (or Xlib) and a higher-level library called X Toolkit Intrinsics. X Windows separates the
server (which manages the display of graphical information) from the client (which is the application
program that uses X Windows). The server and client can run on separate computers, so the application
may run on a powerful numerical server while the output appears on a graphics workstation. This feature
has also led to the development of X terminals—that is, computers equipped only to display graphics on
a computer screen.

Because X Windows is a set of toolkits and libraries, it does not have graphical user interface standards
as do Windows and Mac OS. Motif is the most common windowing system, library, and user interface
style built on X Windows. Motif handles windows and a set of user interface controls known as widgets.
Widgets cover the whole range of user interface, including buttons, scroll bars, menus, and high-
functionality items such as a Web browser widget.

Page 21 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Windows Terminal Services and Citrix

Windows can provide sessions that run applications on a server but are displayed on a client
workstation. These sessions can be implemented with both Terminal Services (on Windows 2000) and
Citrix.

Both Terminal Services and Citrix use a server-based session similar to the way UNIX operates. The
difference is that Terminal Services and Citrix use a smart GUI terminal specific to running Windows
programs. This is analogous to the way an X terminal operates in a UNIX environment. System
managers can use Terminal Services to deliver Windows functionality to a low-end computer or even
one that does not run Windows. Terminal Services can also be used to remotely administer a Windows-
based server.

Terminal Services is particularly useful to implement server-based applications in a thin client
environment. Additionally, Terminal Services provides a smart GUI protocol that works effectively on
slow links. This protocol allows enterprises to consolidate applications in a remote location, without the
loss of performance usually associated with slower remote networks.

System managers can implement Terminal Services using network load balancing in scale-out server
clusters. This configuration allows for both higher availability and the ability to add more servers when
the load increases.

Applications that use Terminal Services or Citrix usually fall into two categories:

l Desktop applications (such as Microsoft Office) moved from the desktop client to a central server
l Remote applications that require thin client connectivity and that are unable to operate through a

Web-based interface

System Configuration

UNIX users generally perform system configuration by editing the configuration files with any of the
available text editors. Many UNIX users and system administrators like the fact that much of the
configuration for UNIX is stored in text files. The advantage this is that the user does not need to learn a
large set of configuration tools; he or she must only be familiar with an editor and possibly a scripting
language. The disadvantage is that the information in the files comes in various formats, so the user
must learn the various formats to change the settings.

To manage a network, UNIX system administrators often employ scripts to reduce the possibility of
repetition and error. In addition, administrators can use NIS to centralize the management of many
standard configuration files. Although different versions of UNIX have GUI management tools, such
tools are usually specific to each version of UNIX.

Windows has GUI tools for configuring the system. The advantage of these tools is that they can offer
capabilities depending on what is being configured. In recent years, the Microsoft Management Console
(MMC) has provided a common tool and user interface for creating configuration tools. Windows also
provides a scripting interface for most configuration needs through the Windows Scripting Host (WSH).
WSH implements two widely known scripting languages—Microsoft Visual Basic® Scripting Edition
(VBScript) and Microsoft JScript®—plus a set of objects for manipulating system configuration
settings. (WSH is described in greater detail later in this chapter.)

Page 22 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Startup scripts and logon/logoff scripts

In UNIX, scripts are used at startup time to invoke most system and user processes. Such scripts include
any special scripts a systems manager has written, in addition to all the system services (such as
networking and printing). UNIX has a special process called init that the kernel starts. The init process
is responsible for starting all other services and process. It is configured through a file called /etc/inittab.
For BSD-style systems, init runs various rc scripts to configure services, and for System V–style
systems, init runs scripts under the /etc/rc?.d directory. Configuration of the characteristics of any
service is carried out within /etc/inittab and the rc scripts.

In Windows, the startup characteristics of different services (such as network servers and print servers)
are controlled through a GUI and stored in the registry. There is no need to create a script to start or stop
services. In Windows NT and Windows 2000, logon scripts can run each time a user logs on. The script
can be used to configure the environment for the user, for example to provide access to network shares
and printers. A logon script is usually a batch file or a WSH script, and can be shared among several
users. Logon scripts can be assigned through the User Manager, or a user policy can be set to run a script
for all users through the Policy Editor. A user policy can also be used to set a logoff script.

Interprocess Communication

An operating system designed for multitasking or multiprocessing must provide mechanisms for
communicating and sharing data between applications. These mechanisms are called interprocess
communication (IPC). Some forms of IPC are designed for communication among processes running on
the same computer, whereas other forms are for communicating across the network between different
computers.

UNIX interprocess communication

UNIX has several IPC mechanisms that have different characteristics and are appropriate for different
situations. Shared memory, pipes, and message queues are all suitable for processes running on a single
computer. Shared memory and message queues are suitable for communicating among unrelated
processes. Pipes are the mechanism usually chosen for communicating with a child process through
standard input and output. (For more information about message queues, refer to the "Message Queues"
section later in this chapter.)

For communication across the network, sockets are usually the chosen technique. Migration from UNIX
sockets to Windows sockets is s usually a straightforward process involving few changes to the code.

Windows interprocess communication

Windows has many IPC mechanisms, some of which have no counterpart in UNIX. As with UNIX,
Windows has shared memory, pipes, and events (equivalent to signals). These are appropriate for
processes local to a computer. The shared memory implementation is based on file mapping, because
certain forms of shared memory can be used across the network. Named pipes can also be used for
network communications.

Other IPC mechanisms supported by Windows are the clipboard/Dynamic Data Exchange (DDE),
Component Object Model (COM), and send message. These are mostly used for local communications,
but DDE and COM both have network capabilities. Windows sockets and Message Queuing (also
known as MSMQ) are good choices for cross-network tasks.

Page 23 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Two additional IPC mechanisms for Windows are remote procedure call (RPC) and mailslots. RPC is
designed for use by client/server applications and is most appropriate for C and C++ programs. Mailslots
are memory-based files that a program can access by using standard file functions. Mailslots have a
fairly small maximum size. Usage is often similar to named pipes except that mailslots are effective for
broadcasting small messages.

Synchronization

Both UNIX and Windows have an extensive set of process and thread synchronization techniques. Both
operating systems use semaphores, which are synchronization primitives used to control access to a
resource that can support a limited number of users. Both UNIX and Windows also use mutex objects to
control mutually exclusive access to a resource.

For lightweight control of multithread access to a section of code, Windows offers critical section
objects. Critical sections are similar to mutexes, but access is limited to the threads of a single process.
This makes them appropriate for controlling access to a shared resource. Threads can access the critical
section in any order, but the order is not guaranteed.

Message queues

In UNIX, a message queue is an IPC mechanism. One application sends messages to the queue; another
application reads messages from the queue. The queues are memory based and are very fast as a result.
However, the messages will disappear if the system fails. Message queues were introduced in AT&T
System V UNIX. Because of this, many versions of UNIX that are based on BSD may not have them.
POSIX has message queues but the API is not exactly the same as in System V.

Windows provides a reliable messaging system called Message Queuing (MSMQ). Message Queuing
provides guaranteed message delivery, efficient routing, security, and priority-based messaging. In
essence, a Message Queuing message is guaranteed to be delivered, but there is no specific guarantee
about exactly when it will be received. The operation is the same as on UNIX—one application writes to
the queue and another reads from it. The API, however, is completely different.

Shared memory

As mentioned previously, both Windows and UNIX provide shared memory as one of the IPC
mechanisms. Both mechanisms are intended to provide a section of memory that can be shared between
processes to pass data and control information; however, the implementation details are different.

In one of the UNIX implementations, the program must first call a function to get a shared memory
identifier, shm_id, for the amount of shared memory. The identifier is then used in calls to attach the
shared memory to the process. There are other functions for controlling and removing the shared
memory. This type of shared memory mechanism was introduced in the AT&T System V.2 version of
UNIX.

Later UNIX versions introduced shared memory based on the concept of file mapping. The mmap
function sets up a segment of memory that can be read or written by two or more programs. This
mechanism is used to manipulate files. The mmap function creates a pointer to a region of memory
associated with the contents of the file that is accessed through an open file descriptor.

Windows implementation of shared memory is based entirely on the concept of file mapping. A

Page 24 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

common section of memory can be mapped into the address space of multiple processes. If no file is
specified in the creation function, the shared memory is allocated from a section of the page file. As in
the UNIX implementation, which uses an identifier, Windows uses a handle identifier to identify the
memory that is mapped into the process at the requested address.

Both the UNIX and Windows file mapping solutions offer the capability of saving the contents in a
permanent file.

Pipes

Pipes have similar functionality on both Windows and UNIX systems. Their primary use is to
communicate between related processes.

UNIX pipes can be named or unnamed. They also have separate read and write file descriptors, which
are created through a single function call. With unnamed pipes, a parent process that must communicate
with a child process creates a pipe that the child process will inherit and use. Two unrelated processes
can use named pipes to communicate.

Windows pipes can also be named or unnamed. A parent process and a child process typically use
unnamed pipes to communicate. The processes must create two unnamed pipes for bidirectional
communication. Two unrelated processes can use named pipes, even across the network on different
computers. Typically, a server process creates the pipe, and clients connect to the bidirectional pipe to
communicate with the server process.

DLLs and Shared Libraries

Windows and UNIX both have a facility that allows the application developer to put common
functionality in a separate code module. UNIX calls this feature a shared library. Windows calls this
feature a dynamic-link library (DLL). Both allow application developers to link together object files
from different compilations and to specify which symbols will be exported from the library for use by
external programs. The result is the ability to reuse code across applications. The Windows operating
system and most Windows programs use many DLLs.

Component-based Development

The Windows platform offers developers a wide range of component-based development tools and
technologies, which are discussed in the following sections.

Component Object Model

COM is Microsoft's first component-based development technology. Developers can use COM to
develop component-based software by exploiting a set of well-defined development techniques and
runtime services. By adhering to the COM development model and by using one of the many COM-
aware development environments, developers can easily build component-based software that is capable
of interacting with other components developed by different organizations, potentially in different
development languages.

Although many of the required development techniques—such as how functionality should be exposed
through interfaces—are complex, the development environments available on the Windows platform
mask this complexity. One of the most popular development environments is Visual Basic.

Page 25 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Some of the key features of the COM programming model are as follows:

l COM objects expose functionality through well-defined interfaces, the binary format of which is
defined by the COM specification. (This functionality matches the classic C++ virtual function
table [v-table] layout in memory.)

l An interface consists of a set of methods (although most development environments also allow
properties to be exposed at the interface level through a pair of property-get and property-set
methods).

l COM supports component versioning.
l COM components can be hosted in process (through DLLs), out of process (through executable

files) or in executable files on remote computers.
l All COM components and COM interfaces on a particular computer are logged centrally in the

Windows registry, a hierarchical configuration database for the Windows platform.

The Windows registry contains information such as what hardware is on the system, how the hardware
and system are configured, and what applications are installed on the system. The registry replaces the
myriad of .ini files prevalent on earlier versions of Windows. It has better performance than these files,
provides a convenient central location to store all this data, and provides fine-grained security. Each
registry key can be protected with an ACL in exactly the same way that files can be protected.

For COM, the registry stores a globally unique identifier (GUID) to identify each component class and
interface installed. GUIDs are 128-bit integers that are guaranteed to be unique. COM uses this
information to determine which component class to create when an application requests that an object
(component) be instantiated.

Each component also has a user-friendly name known as a ProgID or programmatic identifier, that is
created by the component vendor and that is not guaranteed to be unique. The recommended format for
a ProgID is vendor. component. version, where vendor and component are alphanumeric names.

When an application must use an object, it starts by calling a COM function, CoCreateInstance, to
create the component. This function takes the registered GUID for the object class (CLSID) as an
argument. If the developer chooses to use the user-friendly ProgID instead, it first calls a function to get
the CLSID from the ProgID. The application may also pass the initial interface GUID to
CoCreateInstance, or it may pass a null entry to receive the default interface. COM finds the server for
the class, loads the class into memory if necessary, and marshals the call if the server is in another
process or across the network.

After a COM component is created, it can be queried for a particular interface that the application needs
to perform its work. Because the interfaces are identified by GUIDs just like the components, the
QueryInterface call takes the GUID as an argument and either returns the interface requested or returns
a null entry if the interface is not implemented by the class.

For more information about COM, see the Microsoft COM Technologies home page.

COM+

COM+ (formerly Microsoft Transaction Server [MTS]) is based on COM and adds a series of
infrastructure-type services designed to help you build sophisticated, component-based distributed
systems. Most of the COM+ services do not require many—if any—additional lines of code in your
components. Instead, COM+ introduces declarative attributes, which you can use to inform the COM+
executive of the services that your component requires at run time. Some of the key COM+ services are:

Page 26 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Distributed transaction processing

This service is used by components that update databases or by other resource managers, such as
Message Queuing. The COM+ distributed transaction service ensures that all actions associated
with a given transaction complete successfully, or the entire transaction fails. This all-or-nothing
model of work management ensures the consistency of an application's state, even across multiple
distributed databases.

l Resource management and pooling

As applications start to scale to larger numbers of clients, objects in the application must share
critical (and limited) resources, such as network connections, database connections, threads, and
memory. COM+ provides a number of resource-management and pooling features to improve
scalability. These features include thread pooling, object pooling, and database connection
pooling.

l Queued Components

The Queued Components service provides an asynchronous message-based communications
model—an essential requirement for distributed systems. Whereas a conventional COM method
call is a synchronous operation, a call to a queued component results in an asynchronous message
being dispatched. The message is reliably delivered by the underlying services of Message
Queuing. One of the advantages of this service is that it removes the need for the server
(component) and client to run simultaneously. For example, if the server that hosts the target
component is currently offline or unreachable through the network, the message request is queued
and is subsequently passed to the component when the server comes online.

l Publish and subscribe event delivery

The COM+ Loosely Coupled Event (LCE) service allows applications to publish information to
subscriber applications and components. The LCE service provides a level of indirection between
information publishers and information subscribers. Publishers communicate directly with the
LCE service (rather than directly with subscribers), whereas subscribers register their interest in
particular information types by notifying the LCE service. This approach means that publishers do
not need to be concerned with the identity of subscribers and vice versa.

l Role-based security

You can use the COM+ role-based security to perform authorization within your component by
checking role membership. For example, you may need to restrict certain functionality within a
component to specific groups of users, such as managers. You can use COM+ to define
application-level roles (such as "managers"), populate them with user accounts at deployment
time, and then either programmatically or declaratively (through attributes) check role
membership to enforce authorization decisions.

l Concurrency management

COM+ provides an automated concurrency management system that relieves you from the
complex task of writing the synchronization logic required to handle concurrent client requests in
a multiuser environment.

Page 27 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

For more information about COM+, see the Microsoft COM + home page.

.NET components

Microsoft .NET is Microsoft's latest component-based development platform. Although from a high-
level perspective it facilitates component-based development in a similar fashion to COM, it radically
extends the development platform and provides the tools and technologies that developers can use to
develop a new kind of Internet-based distributed application.

.NET is based on open Internet standards, which include:

l Hypertext Transfer Protocol (HTTP) for conveying message-based requests and responses across
the Internet.

l Extensible Markup Language (XML) for defining data. XML is self-describing, structured data in
text form. XML can represent any structured data that in the past has been in a different form,
such as datasets from database queries. With XML, an application can get data from a database or
other data source, process it as necessary, and send it to another application across the network.

l Simple Object Access Protocol (SOAP) for remote object communication across the Internet. You
can think of SOAP as an RPC mechanism for use on the Internet. Because the payload of a SOAP
message is represented as XML and is passed over HTTP, messages can be passed through
firewalls—a critical problem with conventional RPC mechanisms. Assuming that the receiving
application correctly authenticates the sender, the receiving application can process the request
and return a response as a separate SOAP message.

.NET also encompasses COM+ services (though they are referred to as Enterprise Services in .NET),
which you can exploit through an efficient interoperability layer. You can use this same layer to
continue to use existing COM components and Win32 DLLs from .NET applications. You can also
call .NET components directly from Win32/COM-based code.

.NET provides a set of technologies that you can use to develop applications for many different device
types, including a myriad of different hand-held devices, desktop computers, and large-scale server
systems.

.NET services

.NET services provide information to applications in much the same way that Web sites provide
information to users of Web browsers. .NET services create a framework for sharing information
between applications and devices, typically by using SOAP as the underlying delivery mechanism. The
ability to find .NET services is provided by well-known, global directory services, such as the emerging
Universal Description, Discovery, and Integration (UDDI) directory service.

.NET services are platform independent because they are based on Internet standards. They are
independent of programming language, application, platform, and operating system.

The .NET Framework

The Microsoft .NET Framework is the platform for building, deploying, and running Internet-based
distributed applications. It introduces a new programming model that developers can use to build XML-
based .NET services and applications.

Page 28 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The .NET Framework provides the necessary foundation, thus permitting developers to concentrate on
solving business problems, writing business logic, and creating user interfaces. It also solves many
traditional application deployment issues and facilitates the operation of Internet-scale and enterprise-
scale applications.

The primary elements of the .NET Framework are the common language runtime and a base class
library. The common language runtime provides a managed runtime execution environment for .NET
Framework applications. It provides many features traditionally associated with operating systems.
Some of the key features are:

l Loading and executing code
l Just-in-time compilation of Microsoft intermediate language (MSIL) to native code
l Application memory isolation and management
l Security
l Strong type-checking
l Access to type metadata
l Cross-language exception handling
l Interoperability with existing code in COM objects and Win32 DLLs
l Other developer support services that include debugging and runtime profiling

The .NET base class library provides an integrated set of classes that expose the underlying functionality
of the Win32 API. All classes are language independent and can be used by all .NET languages,
including the new Microsoft Visual C#™ .NET and Microsoft Visual Basic .NET, in addition to
traditional C++.

You can use this flexibility to choose the language and tools best suited to the job or the ones with which
you have the most experience. Different teams of developers on a project can choose different
languages, but they can still share their code and create new subclasses from classes written in a
different language. This code reuse can dramatically increase team productivity and decrease
development costs.

Other core .NET technologies include:

l Microsoft ADO.NET

You can use ADO.NET, a data access technology, to access a host of different data stores,
including Microsoft SQL Server™, Active Directory, and many other OLE DB–aware or Open
Database Connectivity (ODBC)–aware databases. ADO.NET extends traditional data access
models and includes features designed to support the inherently disconnected nature of Web
applications.

l Microsoft ASP.NET

You can use ASP.NET to rapidly build traditional Web applications and also Web services.

l Windows Forms

You can use Windows Forms (WinForm) classes to build traditional GUI-based Windows
applications.

Page 29 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The .NET Framework is designed so that designers of both Web and rich client Windows Form
(WinForm) applications have similar tools and features available to them. The goal is to provide a rapid
application development environment to developers whether they are creating an ASP.NET Web
application, a .NET service or a Windows Forms application. The Windows Forms designer and the
ASP.NET page designer both feature drag-and-drop placement of controls and separation of code from
visual presentation.

For more information about .NET, see the Microsoft .NET home page.

For more information about UDDI, see the UDDI.org Web site.

Middleware

The following subsections compare the various middleware solutions available for UNIX and Windows
applications.

OLTP systems

Online transaction processing (OLTP) systems have been implemented in UNIX environments for many
years. These systems perform functions such as resource management, threading, and distributed
transaction management. OLTP systems typically provide support for multiple languages and
development environments.

l Common OLTP systems include:
l BEA Systems' Tuxedo
l NCR Corporation's Top End
l Transarc's Encino for DCE (distributed computing environment)

Although OLTP was originally developed for UNIX, many OLTP systems have Windows versions.
Additionally, gateways exist to integrate systems that use different transaction monitors—for example,
the Tuxedo gateway to Top End.

The current challenges for OLTP systems relate to how to integrate with Web and e-business systems.
Many OLTP systems have provided a bridge to the Java programming language, and provide gateways
to Common Object Request Broker Architecture (CORBA) and COM.

When considering transaction and resource management during a UNIX migration, developers should
remember that OLTP systems provide many of the same features as COM+. As with most cross-
platform products, OLTP monitors achieve these features by introducing new APIs to the development
environment. Introducing COM+ for transaction and resource management during a migration can
lessen this type of dependency.

Queuing systems

As mentioned earlier in this chapter, message queuing is provided as a feature in AT&T System V
UNIX, and can be achieved through sockets in Berkeley UNIX versions. These types of memory queues
are most often used for interprocess communications and do not meet the requirements for persistent
store and forward messaging.

To meet these requirements, versions of IBM's MQSeries and BEA Systems' MessageQ (formally

Page 30 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

DEC's MessageQ) are available for UNIX. A reliable and resilient store and forward message queue
provide a key building block for enterprise integration and highly available, loosely coupled systems.

Microsoft provides similar functionality with Message Queuing for Windows. IBM and BEA Systems
also provide versions of their queuing systems for Windows. Gateway products exist that bridge the
various queuing systems.

The reasons for a migration to Windows may include the need to integrate with commercial off-the-shelf
applications. The queuing system for such a migration would need to provide an API that easily
integrates into these applications. For example, Message Queuing provides for a COM Automation
Interface API and .NET classes.

Enterprise Application Integration systems

The need for increased overall efficiency of application infrastructures has led to the need to integrate
what were formally stand-alone applications. E-business systems have added requirements for
integration outside the enterprise's firewall.

An approach to accomplish this integration has been to create an infrastructure that manages invoking
the stand-alone applications and integrates the data transfer between these applications. Enterprise
Application Integration (EAI) systems provide this type of solution.

EAI systems are typically cross-platform systems that provide bridge technology to OLTP monitors
(such as Tuxedo), message queuing systems (such as MQSeries), and distributed object models (such as
COM and CORBA). In this way, an EAI system integrates with the stand-alone application on the
application's own terms, and then provides a data transfer mechanism between applications.

A weakness of EAI systems has traditionally been the need to include compiled interface definition
language (IDL) to achieve the required data marshaling. Microsoft BizTalk® Server provides this type
of functionality based on XML as the common language for information interchange. XML eliminates
the need for compiled IDL for each application interface.

If a conversion from UNIX requires this type of loosely coupled system integration functionality, you
should seriously consider using XML for data interchange in the migration architecture. Bridging IDL
with XML may require you to create an adapter application. However, you can create an adapter
application once for any particular system, rather than for each interface.

Shells and Scripting

A shell is a command-line interpreter that accepts typed commands from a user and executes the
resulting request. In addition to executing programs, shells usually support advanced features, such as
the ability to recall recent commands and a built-in scripting language for writing programs.

Programs written through the programming features of a shell are called shell scripts. In addition to
scripts written through the use of shells, there are also languages specifically designed for writing
scripts. As with shell scripts, these scripting languages are interpreted. The use of scripting languages
leads to rapid development (often with relaxed syntax checking) but slower performance.

Windows and UNIX support a number of shells and scripting languages, some of which are common to
both operating systems.

Page 31 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Command-line shells

On the Windows platform, Cmd.exe is the command prompt or the shell. With the command prompt, a
user can run programs or scripts and invoke applications. The command prompt has a memory or buffer
for recent commands, so the user can retrieve, run, and edit them using various techniques.

On UNIX, a number of standard shells provide the UNIX user interface. These shells include:

l The Bourne shell (sh)

This is the simplest shell, often set as the default. It can invoke programs and create pipes, but it
has no command memory or advanced scripting capabilities.

l The C shell (csh)

This shell includes command memory and a scripting language similar to the C language. A
Windows version of the C shell comes with the Interix product.

l The Korn shell (ksh)

The Korn shell also features command memory and a built-in language for creating script files.
The Korn shell is based on the Bourne shell but includes additional features, such as job control,
command-line editing, functions, and aliases. Windows versions of the Korn shell are delivered
with the Windows Services for UNIX (SFU) and Interix products.

Scripting languages

The following subsections explain the scripting languages and scripting language support provided in
Windows and UNIX.

Windows Scripting Host

WSH is a language-independent environment for running scripts and is often used to automate
administrative tasks and logon scripts. WSH provides objects and services for scripts, establishes
security, and invokes the appropriate script engine depending on script language. Objects and services
supplied allow the script to perform tasks such as displaying messages on the screen, creating objects,
accessing network resources, and modifying environment variables and registry keys.

WSH natively supports VBScript and JScript. Other languages that are available for this environment
are Perl, Rexx, and Python. WSH is built in to all versions of Windows after Microsoft Windows 95. It
can also be downloaded or upgraded from Microsoft.

Perl

Perl is an acronym for Practical Extraction and Report Language. It is an interpreted language that was
originally designed for UNIX, but has since been ported to many platforms. Perl provides a cross-
platform scripting environment that developers can use to write scripts that can be run on both Windows
and UNIX. Perl is effective for string manipulation. Although Perl is not delivered with Windows, there
are many sources for versions of Perl that are designed to run on Windows. Perl does come with the
SFU and Interix products.

Page 32 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Rexx

Rexx is an acronym for Restructured Extended Executor Language, and was originally developed by
IBM UK Laboratories. It is a procedural language that is designed for application programs to use as a
macro, or scripting, language. Although Rexx can issue commands to its host environment and call
programs and functions written in other languages, it is designed to be independent of a specific
operating system. There are versions available for UNIX and Windows.

Python

Python, like Perl, is an interpreted language. It has many similar features to Perl but has a clearer
programming structure and syntax, making Python code easier to read and maintain. Although it was
designed for UNIX, it is now widely available on other platforms, including Windows. Python is object
oriented and includes dynamic data structures and typing. Python is ideal for rapid software
development where maintainable code is important. Python is not shipped with Windows, but can be
downloaded from the Python Web site.

Tcl/Tk

Tcl/Tk is yet another interpreted language. Like Perl, it is effective for string manipulation, and is
available across UNIX and Windows platforms. Tcl/Tk is particularly applicable to the development of
cross-platform GUIs. Tcl/Tk is not shipped with Windows, but can be downloaded from the Tcl/Tk Web
site.

Development Environments

The development environments for UNIX and Windows have many similarities. In both UNIX and
Windows, you have a choice of environments. The generic UNIX development environment uses a set
of command-line tools. However, there are many third-party integrated development environments
(IDEs) for UNIX, some of which are designed to be cross-platform environments. On Windows, you
have two main choices of development environments: a native Windows development environment and
a UNIX-like development environment such as Interix.

Because this guide is designed to help developers migrate UNIX applications to Windows, the following
subsections focus only on the Windows development environments.

Standard Windows development environment

The standard Windows development environment uses the Microsoft Platform Software Development
Kit and Microsoft Visual Studio®.

Platform Software Development Kit

The Platform SDK delivers documentation for developing Windows applications, libraries, headers, and
definitions needed by language compilers, samples with code, and command-line and stand-alone tools
for Windows and kernel development. The Windows SDK and the Microsoft .NET Enterprise Server
SDK are combined to form the Platform SDK.

Note The Platform SDK is available at no cost on the Microsoft MSDN Web site or as a
CD.

Page 33 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The SDK documentation includes developer guides and references for all Windows APIs, including
Win32, COM+, and GDI+, along with many others. There are also guides and references for the .NET
Enterprise Server APIs, including BizTalk Server, Microsoft Exchange Server, and SQL Server.
Development guides contain information on designing applications for all recent versions of Windows,
including the 64-bit versions of the Windows Server 2003 family. Documentation and header files exist
for the following categories of APIs and services:

l Base services
l Component services
l Data services
l Graphics and multimedia services
l Messaging and collaboration services
l Networking and directory services
l Security
l Setup and system administration
l Tools and scripting
l User interface services
l .NET services
l Windows API

The Platform SDK includes a rich set of command-line and stand-alone Windows tools for building,
debugging, and testing applications. Tool categories delivered with the Platform SDK are:

l Cryptography
l Debugging
l DirectX
l File management
l MAPI (Messaging API)
l Multimedia
l OLE
l Performance
l Resource files
l TAPI (Telephony API)
l Testing

Visual Studio

Visual Studio is an IDE that delivers a complete set of tools for application development, including the
development of multitier components, user interface design, database programming and design, and
development team support. Visual Studio provides language tools, editing tools, debugging tools,
performance analysis tools, and application installation tools.

Visual Studio has compilers and development tools for several popular languages, including C, C++,
and Visual Basic. Microsoft Visual Studio version 6.0 also includes support for Java language applets,
applications, and components through Microsoft Visual J++®. Microsoft Visual Studio .NET includes
the new language, C#. Both versions come with database support and a real database for developing
applications. Support for each language includes the IDE with editor and common toolbox, compiler,
linker, and debugger. The common environment reduces costs associated with training and eliminates
the disorienting effects of switching languages.

For Web applications, Visual Studio delivers tools for development by distributed teams. Visual Studio

Page 34 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

6.0 includes Microsoft Visual InterDev™, an integrated tool for creating Web applications through
Hypertext Markup Language (HTML), script, and components. The components can be developed in
any of the available languages—C, C++, Visual Basic or Visual J++. Visual Studio .NET integrates
Web design even more completely into the C# and Visual Basic environments. Expanding on the
popular rapid application development (RAD) capabilities of Visual Basic, Visual Studio .NET lets
developers use drag-and-drop tools to add Web components on a page. Capabilities for .NET services—
including the editing features of Microsoft IntelliSense®—are fully integrated. Developers can easily
create .NET services, deploy them, and use them in other applications, whether the applications are Web
based or client based.

Visual Studio also provides performance analysis tools that enable developers and testers to understand
the structure and flow of the application and to isolate performance bottlenecks. In Visual Studio 6.0 ,
the performance analysis tool is Visual Studio Analyzer; in Visual Studio .NET, the tool is Application
Center Test.

In addition, Visual Studio includes package and deployment tools to enable developers to deploy
components and functionality for distributed applications.

The Interix development environment

The Interix Software Development Kit contains documentation, tools, API libraries, and headers needed
by language compilers for porting UNIX applications to Windows. With the Interix SDK, you can host
your own tools and applications alongside SFU tools and applications.

Included in the Interix SDK is a UNIX development environment, with tools such as the GNU gcc, g++
and g77 compilers, and the gdb debugger. The Interix SDK also provides user interfaces, through the cc
and c89 compiler drivers (that is, interfaces to the compiler and linker programs CL.exe and Link.exe,
respectively) for Microsoft Visual C++ version 5 and later, with which you can compile C programs to
provide the benefits of the native compiler for Windows. The cc and c89 utilities work only with the
Visual C++ compiler; they do not work with gcc. You cannot compile C++ code by using the cc and c89
interfaces. You must use g++ for C++ code.

The SDK documentation includes developer guides and references for all POSIX.1 system interfaces
and headers, Interix extensions to POSIX.1 and POSIX.2 interfaces, and the International Organization
for Standardization/American National Standards Institute (ISO/ANSI) C libraries. Development guides
contain information about designing and building UNIX daemons as services, curses, and X Windows–
based applications, and porting UNIX code, as well as documentation and header files for the following
categories of APIs and services:

l POSIX.1 APIs
l Cryptography
l User interface services
l Curses and terminal routines
l X Windows
l Database (dbm)
l RPCs
l Sockets
l Memory-mapped files
l System V IPC mechanisms
l BSD string and memory functions
l Pseudo terminals

Page 35 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l Controlling terminals
l Security
l Setup and System Administration
l Tools and Scripting

Interix provides a rich set of command-line and stand-alone tools for building, debugging, and testing
applications. Tool categories delivered with the SDK are:

l Compiling (cc, c89, gcc, g++, and g77)
l Linking (ld)
l Debugging (gdb)
l File management
l Performance
l Testing

Interix integration with Visual C++

If Visual C++ is installed, SFU Setup will configure the Interix SDK to work with Visual C++.

If Visual C++ is installed after the Interix SDK, the location of the Visual C++ compiler and linker is
provided manually to the cc(1) and c89(1) utilities. The developer does this by using the Windows
System Properties dialog box to create a Windows system variable named INTERIX_COMPILERDIR
and setting its value to the path of the directory where Visual C++ is installed, in POSIX format. For
example, if Visual C++ is installed in directory C:\MSDEV, the value of INTERIX_COMPILERDIR
would be /dev/fs/C/MSDEV. If the path contains spaces, the MS-DOS version of the path should be
used.

Conclusion

Windows provides all the features that make it the right choice for organizations that want to run all
their applications on a single desktop. On the Windows platform, line-of-business and office
productivity applications can run side by side and exchange data seamlessly. Earlier UNIX applications
can be ported to run under Windows, or they can use Interix or other migration environments to run the
applications with minimum modification. In either case, users do not need to switch environments. User
productivity will increase and frustration will decrease by having a single user environment to learn and
use.

For example, Windows applications use the Win32 API, which is implemented by the Win32
subsystem. Programs written for MS-DOS, OS/2, Microsoft Windows version 3.x, and POSIX run in
their own environmental subsystems, all of which interact extensively with the Win32 subsystem to
implement their functionality.

The Interix subsystem implements POSIX APIs. Even with this independence, you can still run Win32
programs, such as Notepad (Notepad.exe) and Calculator (Calc.exe), from the Interix shell prompt.

Page 36 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Send feedback to Microsoft

© Microsoft Corporation. All rights reserved.

Page 37 of 37Chapter 2: UNIX and Windows Compared

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

