
UNIX Application Migration Guide

Chapter 10: Interix Code Conversion

Larry Twork, Larry Mead, Bill Howison, JD Hicks, Lew Brodnax, Jim McMicking, Raju Sakthivel, David
Holder, Jon Collins, Bill Loeffler
Microsoft Corporation

October 2002

Applies to:
 Microsoft® Windows®

UNIX applications

The patterns & practices team has decided to archive this content to allow us to streamline our latest
content offerings on our main site and keep it focused on the newest, most relevant content. However, we
will continue to make this content available because it is still of interest to some of our users.
We offer this content as-is, without warranty that it is still technically accurate as some of the material is
undoubtedly outdated. Note that the content may contain URLs that were valid when originally published,
but now link to sites or pages that no longer exist.

Summary: Interix provides a POSIX compatible runtime environment with additional extensions on
Windows. This enabled a large number of UNIX applications to run on Windows with little or no
adjustment. Chapter 10: Interix Code Conversion discusses in detail the changes you may need to make so
that your current application can compile and run on Interix. (71 printed pages)

Contents

Introduction
How to Convert the Code
Processes
Signals and Signal Handling
Threads
Memory Management
Users, Groups and Security
File and Data Access
Interprocess Communication
Sockets and Networking
The Process Environment
Daemons and Services
Functions to Change for Interix

UNIX Code Migration Guide

Page 1 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Code Examples

Introduction

This chapter describes how to modify UNIX source code to compile on Interix.

Because Interix is designed to be similar to UNIX, few changes are needed to recompile code under
Interix. However, there are differences between Interix and UNIX, which mainly arise from the underlying
differences in operating system kernels and environments. As a result, some code changes are needed.
This chapter discusses how to change those areas that are different.

This chapter first addresses how to convert code. The bulk of this chapter covers the same coding
categories as Chapter 9, Win32 Code Conversion. As Chapter 9 describes, many coding changes are
needed for Win32. For Interix, only the following categories change and only they are discussed here:

l Processes
l Signals and signal handling
l Threads
l Memory management
l Users, groups and security
l File and data access
l Interprocess communication
l Sockets and networking
l Process environment
l Daemons and services
l Miscellaneous APIs

Within each category, this chapter's sections:

l Describe the coding differences
l Outline options for converting the code
l Illustrate with source code examples

The information presented here is a guide to help developers choose the solution appropriate to an
application. Examples are presented as a basis for migrating code.

It is the intention of this guide to give sufficient information to choose the best method for converting the
code. After choosing a method, refer to the standard documentation for details of the Microsoft Interix®
functions and application programming interfaces (APIs).

How to Convert the Code

To add or isolate code that implements Interix-specific features, surround it with #ifdef __INTERIX, such
as in the following example:

#ifdef __INTERIX
(void) fcntl(fd, F_SETFL, fcntl(fd, F_GETFD) | FD_CLOEXEC));
#else
(void) ioctl(fd, FIOCLEX, NULL);
#endif

Page 2 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The __INTERIX macro is automatically defined to be true (1) by the c89 compiler interface and by the
gcc compiler. The _POSIX_ macro is defined to be true (1) by c89. The c89 interface also passes the /Za
option to the Microsoft Visual C++ compiler, which defines __STDC__, unless -N nostdc is specified.
When -N nostdc is defined, the ANSI-only mode in the Visual C++ compiler is disabled and Microsoft
extensions are allowed. The default is ANSI C mode.

The cc compiler interface defines the symbols __INTERIX and unix to be true. (The unix macro is
defined because many applications intended to be compiled on multiple platforms use this macro to call
out features found on UNIX systems.) The cc interface also passes the /Ze option, which enables language
extensions.

The Interix header files are structured to align with the Single UNIX Specification. For example, string
and memory functions that occur in POSIX.1 are in string.h. String and memory functions that are in the
Single UNIX Specification, but not in POSIX.1, are in strings.h.

The include files are also structured to restrict the API namespace. If the macro _POSIX_SOURCE value
is defined to be 1 before the first header file is included, the program is restricted to the POSIX
namespace. It contains only those APIs specified in the POSIX standards. This can be restrictive.

To get all of the APIs provided with the Interix Software Development Kit (SDK), define the
_ALL_SOURCE value as 1 before the first header file is included, as shown in the following example:

#define _ALL_SOURCE 1
#include <unistd.h>

If the source is not defined, the default is the more restrictive _POSIX_SOURCE.

Table 1 lists the header files that are included with Interix in the /usr/include directory and compares them
with the header files found in the Linux and Solaris variants.

Table 1. Interix header files in /usr/include, with Linux and Solaris variants

Header Interix Linux Solaris
ar.h X X X
assert.h X X X
cpio.h X X X
ctype.h X X X
curses.h X X X
db.h X X
dirent.h X X X
dlfcn.h X X X
err.h X X sys/err.h
errno.h X X X
eti.h X X X
excpt.h X
fcntl.h X X X
Features.h X X
float.h X X
Fnmatch.h X X X
form.h X X X

Page 3 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

fts.h X X
ftw.h X X X
glob.h X X X
grp.h X X X
libgen.h X X X
limits.h X X X
locale.h X X X
malloc.h X X X
math.h X X X
Memory.h X X X
menu.h X X X
mpool.h X
ndbm.h X X
netdb.h X X X
new.h X
nl_types.h X X X
nl_types_private.hX
panel.h X X X
paths.h X X
poll.h X X X
pty.h X X
pwcache.h X
pwd.h X X X
regex.h X X X
search.h X X X
setjmp.h X X X
signal.h X X X
stdarg.h X X
stddef.h X X
stdio.h X X X
stdlib.h X X X
string.h X X X
strings.h X X X
stropts.h X X X
syslog.h X X X
tar.h X X X
term.h X X X
Termios.h X X X
time.h X X X
tzfile.h X X
ucontext.h X X X
ulimit.h X X X
unctrl.h X X X
unistd.h X X X
utime.h X X X
utmpx.h X X X
va_list.h X
Varargs.h

Page 4 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Table 2 lists the header files that are included with Interix in the /usr/include/sys directory and compares
them with the header files found in the Linux and Solaris variants.

Table 2. Interix header files in /usr/include/sys, with Linux and Solaris variants

X X
vis.h X
wait.h X X X
wchar.h X X X
xti.h X X

Header Interix Linux Solaris
cdefs.h X X
dir.h X X
endian.h X
errno.h X X X
fault.h X X
fcntl.h X X X
file.h X X X
fsid.h X X
ioctl.h X X X
ipc.h X X X
mkdev.h X X
mman.h X X X
msg.h X X X
param.h X X X
procfs.h X X X
queue.h X X
reg.h X X X
regset.h X X
resource.h X X X
select.h X X X
sem.h X X X
shm.h X X X
siginfo.h X X
signal.h X X X
socket.h X X X
stat.h X X X
statvfs.h X X X
stropts.h X X X
syscall.h X X X
syslog.h X X X
Termios.h X X X
time.h X X X
timeb.h X X X
times.h X X X
types.h X X X

Page 5 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Processes

The UNIX and Windows process models are very different. However, because these differences are
hidden by the Interix subsystem, it is possible to migrate UNIX code to Interix with few process code
modifications.

The following sections confirm the similarities between UNIX and Interix process functions and highlight
the few areas that need to be changed when migrating code.

Creating a New Process

Interix supports the UNIX process creation APIs, fork() and vfork(). Code that uses these calls does not
require any modifications to compile under Interix.

For an example of code that ports to Interix without change, see "Creating a Process in UNIX by Using
fork and exec" in Chapter 9, "Win32 Code Conversion."

Replacing a Process Image (exec)

Because Interix supports all six exec calls—exec(), execl, execle(), execlp(), execv(), execve() and execvp
()—code that uses these calls does not need to be modified.

However, if the exec call is used with a setuid() call, the code must be modified. In this case, replace the
exec() and setuid() combination with an Interix exec*_asuser() call.

Note In Interix, man setuid produces the setuid manual page.

For more detailed information, see the section "The exec*_asuser Functions" under "Users, Groups and
Security," later in this chapter.

For an example of code that ports to Interix without change, see "Replacing a Process Image in UNIX
Using exec" in Chapter 9, "Win32 Code Conversion."

Process Hierarchy

In UNIX, processes have a parent-child relationship. This hierarchical arrangement is used to manage
processes within applications.

The Win32 subsystem does not use a process hierarchy.

However, Interix does maintain a process hierarchy, and even tracks the parent-child relationship of
Win32 processes on the same system. The Interix command ps-efi displays processes and their
relationship to each other. (The -i option is specific to Interix and shows the process hierarchy.)

ucontext.hX X X
uio.h X X X
un.h X X X
user.h X X X
utsname.h X X X
wait.h X X X

Page 6 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The following shows sample output from ps-efi, showing Interix processes followed by Win32 processes:

 UID PID PPID STIME TTY TIME CMD
...
 joeuser 2049 1 Jun 4 n00 0:00.59 /bin/csh -l
 joeuser 9545 2049 06:31:58 n00 0:00.01 ps -ef
...
+SYSTEM 8 0 Jun 4 S00 1:14.33 SystemProcess
+SYSTEM 152 8 Jun 4 S00 0:00.86 \SystemRoot\System32\smss.exe
+SYSTEM 176 152 Jun 4 S00 3:53.04 C:\WINNT\system32\csrss.exe C:
+SYSTEM 1040 152 Jun 4 S00 0:23.39 C:\WINNT\system32\psxss.exe C:
+SYSTEM 196 152 Jun 4 S00 0:24.47 C:\WINNT\system32\winlogon.exe
+SYSTEM 236 196 Jun 4 S00 0:48.41 C:\WINNT\system32\lsass.exe
+SYSTEM 224 196 Jun 4 S00 0:47.00 C:\WINNT\system32\services.ex

Waiting for a Child Process

Interix supports most of the wait-for-process-termination calls, including wait() and waitpid(). It does not
support calls in the style of Berkley Software Distribution (BSD). When BSD-style wait calls are used,
modify code to use the suggested equivalents in Interix, as shown in Table 3.

Table 3. BSD-style calls and Interix equivalents

The functions supported by Interix are defined by the POSIX and UNIX standards and will be more
portable than the older forms they replace.

Combining waitpid() with getrusage() doesn't produce the same results as wait3() or wait4() without
taking some additional steps in the ported application. The idea is to capture getrusage
(RUSAGE_CHILDREN, . . .) information at some instant before the child process has terminated; once
the child terminates and has been waited for, capture a second set of getrusage
(RUSAGE_CHILDREN, . . .) information and compute the difference between the data contained in the
two structures.

Managing Process Resource Limits

As stated in the Chapter 9, Win32 Code Conversion, the UNIX getrlimit function returns the process
resource limits, getrusage returns current usage and setrlimit sets new limits. Interix supports these three
functions and the common limit names. The common limit names are shown in Table 4.

Table 4. Process resource limit names

Function name Description Suggested Interix replacements
wait3('status, options, NULL) Waits for process termination waitpid (-1, 'status, options)
wait3('status, options, 'r_usage) Waits for process termination cpid = waitpid (-1, 'status,

options)
getrusage (cpid, 'r_usage)

wait4(pid, 'status, options,
NULL)

Waits for process termination waitpid (pid, 'status, options)

wait4(pid, 'status, options,
'r_usage)

Waits for process termination waitpid (pid, 'status, options)
getrusage (pid, 'r_usage)

Limit Description

Page 7 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Some other resource limit names that are sometimes used in UNIX code are not available in Interix. These
names are shown in Table 5. For these names, modify code to use the suggested replacements shown in
the table.

Table 5 Process resource limit names not available in Interix

RLIMIT_CORE Maximum size, in bytes, of a core file created by this
process. If the core file will be larger than RLIMIT_CORE,
the write is terminated at this value. If the limit is set to 0,
then no core files are created.

RLIMIT_CPU Maximum CPU time, in seconds, that a process can use. If
the process exceeds this time, the system generates
SIGXCPU for the process.

RLIMIT_DATA Maximum size, in bytes, of a process data segment. If the
data segment grows larger than this value, the functions
brk, malloc and sbrk fail.

RLIMIT_FSIZE Maximum size, in bytes, of a file created by a process. If
the limit is 0, the process cannot create a file. If a write or
truncate call exceeds the limit, further attempts fail.

RLIMIT_NOFILE Highest possible value for a file descriptor, plus one. This
limits the number of file descriptors a process can allocate.
If more than RLIMIT_NOFILE files are allocated,
functions allocating new file descriptors can fail and
generate the error EMFILE.

RLIMIT_STACK Maximum size, in bytes, of a process stack. The stack will
not automatically grow past this limit. If a process tries to
exceed the limit, the system generates the SIGSEGV error
for the process.

RLIMIT_AS Maximum size, in bytes, of total available memory for a
process. If this limit is exceeded, the memory functions
brk, malloc, mmap and sbrk fail with errno set to
ENOMEM, and automatic stack growth fails as described
for RLIMIT_STACK.

Limit Description Suggested Interix replacement
RLIMIT_MEMLOCK Maximum locked-in-memory

address space, in bytes.
Interix has no mechanism for
determining or enforcing limits on
this resource.

RLIMIT_NPROC Maximum number of processes. The only Interix equivalent that
provides programmatic information
on process limits is
sysconf(_SC_ CHILD_MAX)
is the only Interix equivalent that
provides programmatic information
on process limits, but this is not an
exact equivalent.

RLIMIT_RSS Maximum resident set size, in
bytes, of address space in a
process's address space in bytes.

Interix has no mechanism for
determining or enforcing limits on
this resource.

RLIMIT_VMEM Maximum size, in bytes, of
mapped address space in a

Interix has no mechanism for
determining or enforcing limits on

Page 8 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Process Groups

Functions in this category provide support for the management of processes as a group. Because the
functions in this group are not supported by Interix, code must be modified to use the recommended
replacement functions shown in Table 6.

Table 6. Process group functions not supported by Interix

As noted, Interix does not support the getpgid(pid) function, which returns the process group ID for a
given process. This information can be obtained, but you would need to use the /proc mechanism, which
allows a program to retrieve a variety of information about any running process. An implementation of
such a function might look like this:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>

extern int errno;

pid_t getpgid(pid_t pid)
{
 char procfile[25];
 char stat_rec[40];
 char inbuf[110];
 char field1[10], field2[100];

 FILE *in;

 sprintf(procfile, "/proc/%d/stat", pid);

 in = fopen(procfile, "r");
 if (in == NULL) {
 errno = ESRCH; /* No such process */
 return(-1);
 }

process's mapped address space in
bytes. If this limit is exceeded, the
brk and mmap functions fail with
errno set to ENOMEM. In
addition, the automatic stack
growth fails as described for
RLIMIT_STACK.

this resource.

Function name Description Suggested Interix replacement
Getpgid(0) Gets process group ID of the

calling process.
getpgrp()

Getpgid(pid) Gets process group ID for process
PID.

Replace with the getpgid(pid)
function (see the description
paragraph that follows this table).

Setpgrp() Sets process group ID of the
calling process.

setpgid(0,0)

Tcgetsid Gets process group ID for session
leader for controlling terminal.

struct utmpx *getutxid (const
struct utmpx *id)

Page 9 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

//Scan file for "pgid" entry

 while(fgets(inbuf, sizeof(inbuf), in))
 {
 sscanf(inbuf, "%s\t%s\n", field1, field2);
 if (strcmp(field1,"pgid") == 0)
 return((pid_t) atoi(field2));
 }

 errno = ENOSYS; /* Function not implemented */
 return(-1);
}

Process Management

Functions in this category provide support for the scheduling and priority management of processes. These
functions are getpriority(), setpriority() and nice(). These functions operate on a "nice" value, an integer
in the range of -20 to +20, where a nice of -20 means that the process has the highest possible priority.
Interix maps nice values to Windows process scheduling priorities according to the following rules:

l A nice value of 0 corresponds to the default Windows scheduling priority 10.
l Positive nice values are applied as a reduction in Windows scheduling priority; for example,

assigning a process a nice value of +4 would result in the process being given a Windows
scheduling priority of 6.

l Negative nice values are applied as an increase in Windows scheduling priority; a process nice value
of -4 would cause the process to have a Windows scheduling priority of 14.

Regardless of nice value, the lowest Windows priority Interix applies to a process is 1; the highest
Windows priority assigned by Interix is 30. Microsoft recommends that no process be assigned a priority
higher than 15—that is, a nice value of -5. The Interix subsystem itself runs at a Windows priority of 15.
Setting a higher priority on any application yields unpredictable results.

Any Interix process can lower the Windows priority of any process owned by the same user (that is,
increase its nice value). The effective user of a process must have been granted the
SE_INC_BASE_PRIORITY_NAME Windows privilege to increase the Windows scheduling priority of
any process owned by the same user (that is, decrease it's nice value). The effective user of a process must
have been granted the SE_TCB_NAME Windows privilege to affect any process owned by any other user.

Signals and Signal Handling

There have been four different implementations of signals in the history of UNIX. The Interix Software
Development Kit (SDK) supports only the POSIX.1 set of signal semantics. However, the Interix SDK
does support several different sets of signal-handling APIs, as follows:

l American National Standards Institute (ANSI) C signals are supported by the function signal().
While this function behaves exactly as required by the ANSI C standard, that definition leaves
windows of time in which signals may be lost or mishandled. The sigaction() API allows
applications to close those windows.

l POSIX.1 signals are supported by the functions sigaction(), sigpending(), sigprocmask(), sigsuspend
(), sigemptyset(), sigfillset(), sigaddset(), sigdelset() and sigismember().

l BSD 4.3 signals are supported by the functions killpg(), sigsetmask(), sigblock() and sigvec(). The
signal mask for these functions is int, not sigset_t.

Page 10 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

(Although sigpause() is provided by the Interix SDK, it is provided as the System V call, which
does not behave in the same way as the BSD call.)

If a future release of the Interix SDK supports more than 32 signals, these functions will become
obsolete. Therefore, rather than depend on these functions, it is better to convert code to use the
POSIX.1 signal calls.

l System V signals are supported with the functions sighold(), sigignore(), sigpause(), sigrelse() and
sigset().

Table 7 lists the POSIX-supported signals, all of which are supported by Interix.

Table 7. POSIX-supported signals

Signal name Description Default action/effect Number
SIGABRT Abnormal termination Terminate process 6
SIGALRM Time-out alarm Terminate process 14
SIGBUS Bus error Terminate process 10
SIGCHLD Change in status of child Ignore 18
SIGCONT Continues stopped

process
Ignore 25

SIGFPE Floating-point exception Terminate process 8
SIGHUP Hang up Terminate process 1
SIGILL Illegal hardware

instruction
Terminate process 4

SIGINT Terminal interrupt
character

Terminate process 2

SIGIO I/O completion
outstanding

Ignore 19

SIGKILL Termination Terminate process
(cannot be caught or
ignored)

9

SIGPIPE Write to pipe with no
readers

Terminate process 13

SIGPOLL Pollable event (Sys V) -
synonym of SIGIO

Ignore 22

SIGPROF Profiling timer alarm Terminate Process 29
SIGQUIT Terminal quit character Terminate Process 3
SIGSEGV Invalid memory reference Terminate Process 11
SIGSTOP Stop process Stop process (cannot be

caught or ignored)
23

SIGSYS Invalid system call Terminate process 12
SIGTERM Software termination Terminate process 15
SIGTRAP Trace trap Terminate process 5
SIGTSTP Terminal stop character Stop process 24
SIGTTIN Background read from

control TTY
Stop process 26

SIGTTOU Background write to
control TTY

Stop process 27

Page 11 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Interix supports most of the signal handling functions. However, Interix does not support some non-
standard platform-specific implementations, such as sigfpe, signal handling for specific SIGFPE codes.
Table 8 shows platform-specific functions not supported by Interix and Interix substitutes, if they exist.

Table 8. Platform-specific signal functions not supported by Interix

SIGURG Urgent condition on
socket

Ignore 21

SIGUSR1 User-defined signal Terminate process 16
SIGUSR2 User-defined signal Terminate process 17
SIGVTALRM Virtual time alarm Terminate process 28
SIGXCPU CPU time limit exceeded Terminate process 30
SIGXFSZ File size limit exceeded Terminate process 31

Function name Description Suggested Interix replacement
bsd_signal Simplified signal facilities. See sample code in the section

"UNIX bsd_signal Code
Replacement," immediately
following this table.

getcontext Gets current user context. No support or equivalent in Interix.
Gsignal Software signals. No support or equivalent in Interix.
makecontext Manipulates user contexts. No support or equivalent in Interix.
Psiginfo Software signals, No support or equivalent in Interix.
Psignal System signal messages. No support or equivalent in Interix.
setcontext Sets current user context. No support or equivalent in Interix.
sig2str Translates the signal number

signum to the signal name.
Write a simple table lookup routine.
(see Table 10.7.)

sigaltstack Sets or gets signal alternative stack
context.

No support or equivalent in Interix.

Sigfpe Handles signals for specific
SIGFPE codes.

_controlfp(. . . ,_MCW_EM).

siggetmask Gets the current set of masked
signals.

Use sigblock(mask) or sigsetmask
(mask) with mask set to zero (0).

siginterrupt Allows signals to interrupt
functions.

Controlled by the SA_RESTART
flag passed to sigaction().

Sigsend Sends a signal to a process or a
group of processes.

No support or equivalent in Interix.

sigsendset Sends a signal to a process or a
group of processes.

No support or equivalent in Interix.

Sigstack Sets and/or gets alternative signal
stack context.

No support or equivalent in Interix.

Ssignal Software signals. No support or equivalent in Interix.
str2sig Translates the signal name str to a

signal number.
Write a simple table lookup routine.
(See Table 10.7.)

swapcontext Manipulates user contexts. No support or equivalent in Interix.
sys_siglist System signal messages. Implement the signals shown in

Table 10.7 as a vector of signal
message strings.

Page 12 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

UNIX bsd_signal Code Replacement

Code that uses the bsd_signal() function should be implemented by using other signal functions in Interix.

The function call bsd_signal(sig, func) can be implemented as follows:

#include <signal.h>
void (*bsd_signal(int sig, void (*func)(int)))(int)
{
 struct sigaction act, oact;

 act.sa_handler = func;
 act.sa_flags = SA_RESTART;
 sigemptyset(&act.sa_mask);
 sigaddset(&act.sa_mask, sig);
 if (sigaction(sig, &act, &oact) == -1)
 return(SIG_ERR);
 return(oact.sa_handler);
}

The code above can support calls to bsd_signal in a migrated application; it can also be used to replace
use of signal() in BSD-derived applications as long as the signal handler expected a single parameter of
type int. If the handler expected any other parameter or parameters, the use of signal() must be modified to
use sigaction().

Threads

Interix does not support threads. Rewrite code that uses threads to use processes instead of threads or
rewrite the application for Win32. Chapter 4, Assessment and Analysis, recommended that threaded code
should not be migrated to Interix because it takes significant effort to rewrite the code to use processes.
Because ease of migration is what motivates most migrations to Interix, it is better to put that effort into a
rewrite to Win32.

Because Interix doesn't support threads, it also doesn't provide the reentrant-safe function variants defined
by the UNIX standards. These functions are named for the non-reentrant version of the same function but
have _r appended to their names—for example, although Interix supports getpwent(), it does not support
getpwent_r(). In the absence of threads, all of the reentrant-safe functions can be replaced by their non-
reentrant versions. The conversion is straightforward.

Memory Management

Because Interix supports the majority of UNIX memory management calls, porting code by using memory
management is generally straightforward. However, because there are a few specific differences, this
section discusses how to address the differences in your code.

Heap

Interix supports most memory functions. The platform-specific memory management functions shown in
Table 9 are not supported and code will need to use the alternative functions.

Table 9 Platform-specific memory management functions

Page 13 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Memory-Mapped Files

Interix supports memory-mapped files by using the mmap function. The length of the mapped space, in
bytes, is rounded up to the nearest multiple of sysconf(_SC_PAGE_SIZE). This means that the value
returned by sysconf(_SC_PAGE_SIZE) (or sysconf(_SC_PAGESIZE)) is not the virtual-memory page
size used by the system, but the value used by the mmap call. Code should work without modification
unless it assumes page sizes to be smaller than 64 KB; most applications are written without any
assumption regarding page size.

For an example of UNIX code that ports to Interix without change, see "Memory Mapped Files" in
Chapter 9, Win32 Code Conversion.

Shared Memory

Shared memory permits two or more processes to share a region of memory. Data is not copied as part of
the communication process. Instead, the same physical area of memory is accessed by both the client and
the server. Because of this, shared memory performance is considered the best of all interprocess
communication (IPC) methods.

Interix supports all of the System V IPC mechanisms, including the shared memory routines shmat,
shmctl, shmdt and shmget.

Function name Description Suggested Interix replacement
Alloca Memory allocator (from stack

frame of caller).
Use malloc(size_t size) and call
free() because space is not
automatically freed on return.
Potential performance issues are
possible because alloca allocated
memory on the stack frame of the
caller instead of the heap.

Cfree Debugging memory allocator. free(void *ptr)
getpagesize Gets system page size. Always returns 65536 (64K)

regardless of the actual Windows
page size. The getconf
(_SC_PAGE_SIZE) and sysconf
(_SC_PAGE_SIZE) functions also
always return 65536 (64K).

mallocctl MT hot memory allocator. Not supported. There may be open
source versions of other allocators,
which can be used.

Mallopt Provides for controls over the
allocation algorithm.

None; the supported malloc() has
no controllable options //mallopt

memalign Debugging memory allocator. No support or equivalent in Interix.
No support is given, or equivalent
is possible, in Interix.

Valloc Equivalent to memalign(sysconf
(_SC_PAGESIZE),size).

malloc(size_t size)

watchmalloc Debugging memory allocator. No support or equivalent in Interix.
No support is given, or equivalent
is possible, in Interix.

Page 14 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The command-line interfaces ipcs and ipcm are also provided for the management of shared memory
segments. The ipcs interface reports the status of interprocess communication objects. The ipcm interface
removes an interprocess communication identifier, such as a shared memory segment.

For an example of UNIX code that ports to Interix without change, see "Shared Memory" in Chapter 9,
Win32 Code Conversion.

Synchronizing Access to Shared Resources

Code that uses shared memory must ensure that the processes accessing shared memory are not attempting
to access the shared memory resource simultaneously. This is particularly troublesome if one or both are
writing to the same shared memory area. To address this, UNIX provides the semaphore object.

But there are two sets of functions for semaphores. The POSIX real-time extensions are used for thread
synchronization. The System V semaphores are commonly used for process synchronization.

The POSIX real-time extensions and threads are not supported by Interix.

Interix supports all of the System V semaphores, including the shared memory routines semctl, semget
and semop.

The command-line interfaces ipcs and ipcm are also provided for the management of semaphore objects.
The ipcs interface reports the status of interprocess communication objects. The ipcm interface removes
an interprocess communication identifier, such as a shared memory segment.

Users, Groups and Security

The UNIX and Windows security models are quite different. Interix, as a subsystem of Windows, uses the
underlying Windows security model. At the same time, Interix attempts to present the Windows security
model in a way consistent with UNIX security.

This results in some key differences between the way in which Interix security works and the way standard
UNIX security works. (For a discussion of some of these differences, see "Comparison of Windows and
UNIX Architectures" in Chapter 2, "UNIX and Windows Compared.") This section covers the differences
in the security model and how to modify code to operate under Interix.

The key areas that are addressed here are:

l User names in Interix
l UNIX UIDs and GIDs versus Windows SIDs
l The passwd file structure
l User and group operation functions
l Running programs as other users or groups
l User accounting database functions

User Names in Interix

User names are handled differently in UNIX and Interix. In UNIX, they are lowercase text stored in the
passwd file. In Interix, the user names are taken from the account database and can contain information
about the domain the account is in as well as its user name.

Page 15 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

It's important to note that Windows places user and group names in the same namespace, while UNIX
places them in separate namespaces. What this means is that a UNIX environment might have a user
named tools and a group named tools, while a Windows environment would forbid that and require, for
example, that the group be named tools_group. Applications should be written in such a way that user and
group names aren't hard-coded; obviously, any code that expects identical user and group names will need
to be changed.

From a programming standpoint, functions that use the user or group name in UNIX, such as getpwnam()
and getgrnam(), accept a DomainName+UserName pair in Interix. The DomainName part is explained in
more detail below. Any application code that assumes that a user or group name cannot contain a plus sign
must be changed. Similarly, applications should be prepared to accept user or group names that are
considerably longer than the norm on UNIX systems. (Traditional UNIX systems limit user and group
names to eight characters each.)

Interix user names and Windows domains

A domain is a collection of networked Windows-based computers that use a common security database.
Most Windows-based computers have access to at least two domains: the network domain, which has a
centralized security database; and a local domain, which uses the security database on the local computer.
On domain controllers, the network and local domains are the same.

Windows user and group names use the format DomainName+UserName. The pw_name and gr_name
members in the Interix passwd and group structures use the same format. They can also be passed in the
form +UserName or UserName.

Table 10 describes how domain and user names are interpreted.

Table 10. Domain and user names in Interix

The Interix principal domain is normally the domain to which the system itself belongs. This can be
overridden by changing a registry setting (HKEY_LOCAL_MACHINE\Software\Microsoft\Services For
Unix\PrincipalDomain). Applications can determine the system's principal domain through the
getpdomain() function.

UNIX UIDs and GIDs vs. Windows SIDs

Name Description
DomainName+UserName The group or user name belonging to the specified

domain.
+UserName When passed to an Interix function, finds the closest

matching name in the same search order used by
Windows. Usually, this is used with well-known names
such as +SYSTEM or +Administrator, and the function
will find the matching name on the local computer.
However, if the name is not found on the local computer,
the function will search the primary domain and other
trusted domains for that name, returning the first match.
When this format is returned from an Interix function, it
indicates a name from the local computer domain.

UserName The group or user name in the same domain as the
calling process.

Page 16 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

UNIX systems translate user and group names to integers, UID and GID, respectively. These values are
typically 32-bit numbers and are assigned arbitrarily by an administrator. It is possible to reuse UID and
GID values, and it is possible for multiple user or group names to correspond to a particular UID or GID.
The UID and GID values are taken from distinct spaces—that is, it is possible for user joes to have UID
556 and group joeteam to have GID 556. There is no guarantee of uniqueness for UID or GID values
between separate systems. Two UNIX systems can have different human users each with the same UID of
556.

Windows systems translate user and group names to SIDs, which are large (typically 112-bit) structured
values. SIDs are automatically assigned by Windows when users or groups are created. SIDs are
guaranteed to be globally unique and can never be reused. There is a one-to-one relationship between a
SID and a user or group. SIDs for users and groups come from the same space.

The UNIX APIs expose user and group identities as integers of type UID_t and GID_t, respectively.
Interix conforms to this requirement by mapping Windows SIDs to UID and GID values. All systems
belonging to the same domain will perform this mapping in the same way. Under normal circumstances,
there will be no collisions amongst mapped UID and GID values—that is, no two Windows SIDs will be
converted to the same UID_t or GID_t.

Because mapped UID and GID values may differ between systems joined to different domains,
applications that need to preserve identity information should store user or group names rather than UID or
GID values.

The passwd File Structure

The files /etc/passwd and /etc/groups do not exist on an Interix system; therefore, some of the
information contained in the structure struct passwd is obtained in a nonstandard way, such as the
following:

l pw_gecos

The user information member contains the text from the Description field in the Windows user
account information.

l pw_shell

The user's shell member is always /bin/sh.

Because other applications in both the Interix subsystem and the Win32 subsystem can use the information
in the pw_gecos and pw_shell fields, the contents of the pw_gecos member will not necessarily continue
to be taken from the Description field found in a Windows user account.

Interix also returns two additional parameters not available on UNIX systems:

l The pw_change parameter returns the time until the password must be changed.
l The pw_expire parameter returns the time when the user's account expires.

User and Group Operation Functions

Because the Interix security model is integrated with the Windows security subsystem, Interix does not
support all of the user and group functions that manipulate or obtain information from

Page 17 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

the /etc/passwd, /etc/group, /etc/shadow, or /etc/gshadow files. Table 11 summarizes the calls that
Interix does not support and recommended replacements.

Table 11. User and group calls not supported by Interix

Function name Description Suggested Interix replacement
Endspent Indicates that the caller expects to

do no further shadow password
retrieval operations.

endspent()

Fgetgrent, fgetgrent_r Gets the group file entry. struct group *getgrent()
fgetpwent, fgetpwent_r Gets the password file entry. struct passwd *getpwent()
Fgetspent, fgetspent_r Reads from a Shadow file stream. struct passwd *getpwent()

Note: Interix does not support a
concept of a shadow password file.

getgrent_r, getgrgid_r,
getgrnam_r

Gets the group file entry. struct group *getgrent (void)
struct group * getgrgid (GID_t
GID)
struct group * getgrnam (const
char *groupname)

Getpw Gets the password file entry from
UID.

getpwuid(UID) or getpwnam
(*login)
Note: This conversion should be
performed before the port to Interix
on all supported UNIX platforms.

getpwent_r, getpwnam_r,
getpwuid_r

Gets the password file entry. getpwent, getpwnam, getpwuid
Note: The re-entrant routines are
not required on Interix at this time
because it is not multithreaded.

getspent, getspent_r Gets the shadow password file
entry.

struct passwd *getpwent()
Note: Interix does not support a
concept of a shadow password file,
and the re-entrant routines are not
required on Interix at this time
because it is not multithreaded.

Getspnam, getspnam_r Gets the shadow logon name file
entry.

getpwnam(*login)
Note: Interix does not support a
concept of a shadow password file,
and the re-entrant routines are not
required on Interix at this time
because it is not multithreaded.

initgroups(*name, GID_t
basegid)

Initializes the supplementary
group access list.

getgroups (int gidsetsize, GID_t
grouplist[])
For a usage example, see the
sample code in "Interix initgroups
Example" below.

lckpwdf, ulckpwdf Manipulates the shadow password
database lock file.

//lckpwdf
//ulckpwdf

Putpwent Writes a password file entry. For password change:
chpass(*fq_user, *oldpw,
*newpw)

Page 18 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Interix initgroups example

<initgroups.c>

Interix getgroups conversion example

#include <sys/types.h>
#include <unistd.h>
#include <grp.h>

int main()
{
 struct group *ptr_group;
 GID_t grouplist[100];
 int num;

 num = getgroups (99, grouplist);

Putspent Writes a shadow password file
entry.

For password change:
chpass(*fq_user, *oldpw,
*newpw)

setgroups Sets supplementary group access
list Ids.

The list of supplementary groups
can be retrieved with getgroups,
but it is not possible to build and
apply an arbitrary list of
supplementary groups.

setresgid, where rgid=egid=sgid Sets real, effective, and saved
group ID.

setgid (GID)
For more information about
changing UID and GID in Interix,
see the "Changing User ID by
Using the Interix setuser()
Function" section in this chapter.

setresgid, where rgid!=egid!
=sgid

Sets real, effective, and saved
group ID.

setregid (rgid, egid)
For more information about
changing UID and GID in Interix,
see the "Changing User ID by
Using the Interix setuser()
Function" section in this chapter.

setresuid, where ruid=euid=suid Sets real, effective, and saved user
ID.

setuid (UID)
For more information about
changing UID and GID in Interix,
see the "Changing User ID by
Using the Interix setuser()
Function" section in this chapter.

setresuid, where ruid!=euid!
=suid

Sets real, effective, and saved user
ID.

setreuid (ruid, euid)
For more information about
changing UID and GID in Interix,
see the "Changing User ID by
Using the Interix setuser()
Function" section in this chapter.

Setspent Sets the shadow password entry in
the database.

Interix does not support a concept
of a shadow password file.

Page 19 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 printf("group\tID:\n---------------\n");
 if (num > 0)
 while(num--) {
 ptr_group = getgrgid(grouplist[num]);
 printf("%s\t%d\n", ptr_group->gr_name, grouplist[num]);
 }
 else
 printf("num=%d\n", num);

 exit(0);
}

Running Programs as Other Users or Groups

Some programs require access to resources to which the current user has no access. This is solved on
UNIX systems by running the program as a specific user or group rather than as the current user or group.
UNIX programs can use special permissions on the program's executable file called the setuid and setgid
bits.

According to the POSIX standard, a file's permissions include bits to set a UID (setuid) and to set a GID
(setgid). If either or both bits are set on a file and a process executes that file, the process runs with an
identity based on the UID or GID of the file respectively.

When you run a program that has the setuid bit set in the file permissions, it runs as if the file's owner has
executed it no matter who actually started it. These user and group ids are called effective user ID and
effective group ID.

When an Interix process executes a file that has the setuid or setgid bit set, Interix constructs local
security tokens for the process with the privileges assigned to the owner (if setuid is set) and/or group (if
setgid is set) of the file. Because these tokens are local, they are not recognized by other computers on the
network. Even if the file is owned by a member of the Domain Admins group, the process still does not
have trusted access to other computers in the domain by using Windows networking.

For example, a process executes a program file that has its setuid bit set and that is owned by a member of
the Domain Admins group. If that program attempts to change a domain user's password, that attempt fails
because the security tokens of the process are local and not recognized by other systems in the domain. If,
on the other hand, the program attempts to change a local user's password, the attempt succeeds because
the file's owner is a member of the Domain Admins group, which typically belongs to the local computer's
Administrators group.

Because of this, a program that has the setuid bit set in the file permissions runs as if the file's owner had
executed it, no matter who actually started it. These user and group IDs are called effective user ID and
effective group ID.

On UNIX systems, the user and/or group owner is often set to root, thereby allowing a non-root program
to run with root privileges. On Interix, the owner should be set to the Local Administrator or to a member
of the Domain Admins group.

In summary, UNIX and Interix systems maintain at least two user and group Ids: the effective user ID and
effective group ID, and the real user ID and real group ID. Most UNIX systems and Interix also support a
saved set user ID and saved set group ID.

Changing between real and effective user ID in setUID programs

Page 20 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Often in programs with the setuid bit set, it is desirable to be able to change the real and effective IDs
during execution. For example, programmers might want to do one of the following in setuid programs:

l Change from the initial effective user/group ID to the real user/group ID
l Change from the real user/group ID back to the initial effective user/group ID

These two actions can be performed by using the UNIX setuid() function. In addition to this, Interix
provides another function called setuser(), which simplifies changing the User ID.

Changing user ID by using the Interix setuser() function

The proprietary Interix setuser() function changes the effective and real UID and GID of the current
process to that of the specified user name. All of the security attributes and permissions become those of
the specified user name. The current working directory of the process does not change.

To use setuser() to replace the standard UNIX calls

1. Add the following include statement to the code:

#include <interix/security.h>

2. Rewrite the code to use the setuser() function as defined below:

int setuser(char *username, char *password, int flags)

Set the arguments as follows:
l The username argument is the name of the user. If the user name is not fully qualified with a

domain name (that is, domain+name), it is not changed. On a system configured for
workgroups, specify the domain as NULL: that is, use the string "+name" for username.

l The password argument is the plaintext password for the specified user name.
l The flags argument comprises control flags. Possible values for flags are defined in

interix/security.h as follows:

SU_COMPLETE changes the real and effective user and group IDs and all security attributes
to the default for the specified user.

SU_CHECK verifies that the process can perform a setuser() action by using
SU_COMPLETE for the specified user name and password. This is a quick way to verify a
password for a user. This action is equivalent to the older Interix call, authenticateuser().

The setuser() function has the advantage of changing both the UID and the GID with only one function
call. However, it has the disadvantage that it is only supported on Interix.

There can be performance degradation if a process changes identity to a user who does not have
permission to be located in the current working directory. The best solution to this is to call chdir() to a
directory known to be permitted for the new identity after the call to setuser().

The Interix exec*_asuser() functions

Interix provides a set of interfaces used to execute a process as another user. These functions and
structures are defined in the header file security.h. They include execl_asuser(), execle_asuser(),

Page 21 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

execlp_asuser(), execv_asuser(), execve_asuser() and execvp_asuser().

All of these functions use a user security structure, struct usersec, to identify another user. The usersec
structure is illustrated below:

struct usersec {
 char * user;
 char * domain;
 char * password;
 int logontype;
 int logonprovider;
};

The domain, user, and password members of the structure have their normal meanings. The logontype
and logonprovider members are provided for future development; leave them at the default values of 0.

The six exec*_asuser() functions correspond to the six exec functions: execl(), execle(), execlp(), execv(),
execve() and execvp(). The arguments after the struct usersec member are identical to their exec
counterparts.

User Accounting Database Functions

Interix supports a subset of the routines used to track and manage a user accounting database. Interix does
support the following calls: endutxent, getutxent, getutxid, getutxline, pututxline and setutxent.

Table 12 shows user account database functions that are not supported in Interix, and recommended
alternatives to them:

Table 12. User account database functions not supported by Interix

Function name Description Suggested Interix replacement
Acct Enables or disables process

accounting.
No support or equivalent in Interix.

Endutent Closes the currently open
database.

endutxent

Getutent Extracts the next entry from a
UTMP database.

getutxent

Getutid Searches forward from the current
point in the UTMP database.

getutxid

Getutline Searches forward from the current
point in the UTMP database.

getutxline

Getutmp Copies the information stored in
the members of the UTMPX
structure to the corresponding
members of the UTMP structure.

No support or equivalent for the
UTMP structure in Interix.

Getutmpx Copies the information stored in
the members of the UTMP
structure to the corresponding
members of the UTMPX structure.

No support or equivalent for the
UTMP structure in Interix.

Logwtmp Appends an entry to the WTMP
file.

pututxline

Page 22 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

File and Data Access

Interix has some differences with UNIX file and data access because of the underlying Windows
input/output system. Consequently, certain UNIX features are different or do not work in Interix.

This section discusses:

l Differences in Interix and UNIX file I/O calls
l The Interix ioctl() function implementation
l Directory operations
l File system operations in Interix

Differences in Interix and UNIX File Input/Output

Interix does not support file I/O with memory caching turned off (O_DIRECT), and it also does not
support the file I/O APIs listed in Table 13. Table 13 also provides code to implement the missing
functions, if they are needed.

Table 13 File I/O APIs not supported by Interix

Pututline Writes the supplied UTMP
structure into the UTMP database.

pututxline

Setutent Resets the input stream to the
beginning.

setutxent

Updwtmp Appends an entry to the WTMP
file.

pututxline

updwtmpx Writes the contents of the
UTMPX structure pointed to by
UTMPX to the database.

pututxline

utmpname Changes the name of the database
file examined to another file.

utmpxname Changes the name of the database
file examined
from /var/adm/utmpx to any
other file,
typically /var/adm/wtmpx.

Function Description Suggested Interix replacement
pread(fd,
*buf,
nbytes,
offset)

Reads from
a file
descriptor
at a given
offset.

ssize_t pread(int fd, void *buf, size_t count, off_t offset)
{
 ssize_t size;
 off_t rtn
 if (lrtn=seek(fd, offset, SEEK_SET) < 0)
 return((ssize_t) rtn);
 size = read(fd, *buf, nbytes)
 return(size);
}

pwrite
(fd, *buf,
nbytes,
offset)

Writes to a
file
descriptor
at a given

ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset)
{
 ssize_t size;
 off_t rtn
 if (lrtn=seek(fd, offset, SEEK_SET) < 0)

Page 23 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The Interix ioctl() Function Implementation

The ioctl() interface has many uses. The POSIX.1 committee did not standardize the ioctl() interface
because the last argument cannot be type-checked: its type depends upon the request. Instead, the
committee assigned pieces of functionality to other interfaces.

In other words, ioctl() does not have a single standard. Its arguments, returns, and semantics vary
according to the device driver. The call is used for operations that do not cleanly fit the UNIX stream I/O
model.

The ioctl() interface has historically been used to handle the following:

l File control (see "File Control and ioctl()" in this section)
l Socket control (see "Socket Control and ioctl()" in this section)
l Disk labels
l Magnetic tape control
l Terminal control

The disk label and magnetic tape I/O requests are not supported in the Interix environment.

The SFU 3.0 API set contains only a few ioctl() operations, including window re-sizing. The following
two sections explain some additional operations.

File control and ioctl()

The only ioctl() requests defined for file control are FIONREAD, to get the number of bytes available to
read, and FIONBIO, to set and unset non-blocking I/O.

The FIOCLEX and FIONCLEX requests (usually found in Filio.h) are not provided. They can be replaced
with the fcntl() FD_CLOEXEC request, as shown in the following example:

#ifndef __INTERIX
(void) ioctl(fd, FIOCLEX, NULL)
#else
(void) fcntl(fd, F_SETFL, fcntl(fd, F_GETFD) | FD_CLOEXEC));
#endif

Socket control and ioctl()

The only ioctl() request defined for sockets in Interix is SIOCATMARK. Other socket control requests are
handled by using fcntl() or by using functions such as setsockopt().

Directory Operations

Interix supports a subset of the routines used to access directory entries. Interix does not support the calls
shown in Table 14.

offset. return((ssize_t) rtn);
 size = write(fd, *buf, nbytes)
 return(size);
}

Page 24 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Table 14. Directory operations routines not supported by Interix

Replacing scandir in Interix

Because Interix does not support scandir, convert to using readdir. The example "UNIX scandir
Example" below shows UNIX code using the scandir function and the following "Interix readdir
Conversion Example" example shows how this code is converted to use readdir under Interix.

UNIX scandir example

This example lists the contents of the current directory, demonstrating the use of the scandir function in
UNIX.

#include <dirent.h>
main()
{
 struct dirent **namelist;
 int i, n;

 n = scandir(".", &namelist, 0, 0);
 if (n < 0)
 perror("scandir");
 else {
 for (i=0; i<n; i++) {
 printf("%s\n", namelist[i]->d_name);
 free(namelist[n]);
 }
 free(namelist);
 }
}

Interix readdir conversion example

In Interix, you must change from using the scandir function to using the readdir function. The following
code shows how to do this. In the scandir example, scandir is called once and returns the number of
directory entries and a structure containing those entries. In contrast, the readdir function is called in a
loop. Each time readdir is called, it returns a new directory entry until there are none left, and then it
returns NULL.

Function name Description Suggested Interix replacement
Alphasort Can be used as the comparison

function for the scandir() function
to sort the directory entries into
alphabetical order.

Use readdir() to retrieve all entries,
then sort as desired using the libc
sort() or any other sorting function

Getdents(fd, struct dirent *dirp,
count)

Gets directory entries. struct dirent * readdir (DIR
*dirp)

getdirentries Getd directory entries in a file
system system-independent
format.

struct dirent * readdir (DIR
*dirp)

Scandir Scans a directory for matching
entries.

readdir
For more information, see the code
example in the "Interix readdir
Conversion Example" section
below

Page 25 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

#include <dirent.h>
#include <stdio.h>
main()
{
 DIR *dp;
 struct dirent *entry;

 if((dp = opendir(".")) == NULL)
 perror("opendir");
 else {
 while((entry = readdir(dp)) != NULL)
 printf("%s\n",entry->d_name);

 closedir(dp);
 }
}

For other examples of UNIX code that ports to Interix without change, see "Directory Scanning" in
Chapter 9, Win32 Code Conversion.

Working directory

Interix does not support the routines to get the current working directory shown in Table 15.

Table 15. Working directory routines not supported by Interix

The getwd API as defined on BSD systems is particularly dangerous, as it is vulnerable to buffer overrun
attacks. Replace it with getcwd and a buffer of known size.

For an example of UNIX code that ports to Interix without change, see "Working Directory" in Chapter 9,
Win32 Code Conversion.

File System Operations in Interix

Operations on file systems in Interix differ in a number of ways from file system operations under UNIX.
Some functions are not supported, such as sync, sysfs and ustat. Others have different parameters or use a
different set of options for UNIX.

Table 16 lists the file system information functions that need to be replaced.

Table 16. File system information functions not supported by Interix

Function name Description Suggested Interix replacement
get_current_dir_name Gets current working directory

(define:__USE_GNU).
getcwd(buf, max)

Getwd Gets current working directory
(define:__USE_BSD).

getcwd(buf, max)

Function Description Suggested Interix replacement
statfs, fstatfs Get file system statistics. statvfs

For more information on statvfs,
see Table 17.

Sync Writes all information in memory No support or equivalent in Interix.

Page 26 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

When using the statvfs function in Interix, be aware that the statfs structure has some members different
from those usually found in UNIX. Table 17 summarizes these differences. In general, references to the
statfs structure can by replaced with references to the statvfs structure.

Table 17. Differences between UNIX statfs and Interix statvfs

When using statvfs, the file system types supported by Interix differ from those supported by most
implementations of UNIX. The two lists below illustrate this by comparing a common subset of UNIX-
supported file systems with those supported in Interix. It is rare for these differences to have any impact on
migrating an application.

Commonly supported file systems in UNIX

that should be on disk, including
modified super blocks, modified
inodes, and delayed block I/O.

Sysfs Gets file system type information. statvfs
For more information on statvfs,
see Table 17.

Ustat Gets file system statistics. Port to statfs first.

UNIX statfs structure Interix statvfs structure Description
long f_type unsigned long f_type; Type of file system.

For more information, see
"Commonly Supported File
Systems in UNIX" and "Supported
File System Types in Interix"
below.

long f_bsize unsigned long f_bsize; Transfer block size.
long f_blocks unsigned long f_blocks; Total data blocks in file system.
long f_bfree unsigned long f_bfree; Free blocks in file system.
long f_bavail unsigned long f_bavail; Free blocks available to non-

superuser.
long f_files lunsigned ong f_files; Total file nodes in file system.

(Currently returns 0.)
long f_ffree unsigned long f_ffree; Free file nodes in file system.

(Currently returns 0.)
fsid_t f_fsid unsigned long f_fsid; File system ID.
long f_namelen unsigned long f_namemax; Maximum length of file names.
long f_spare[6] unsigned long f_flag; Bit mask of values describing the

file system.
unsigned long f_frsize; Fundamental block size.
unsigned long f_favail; Total number of file serial numbers

available to a non-privileged
process. (Currently returns 0.)

unsigned long f_iosize; Optimal transfer block size.
char f_mntonname
[MNAMELEN+1];

Mountpoint for the file system.

char f_mntfromname
[MNAMELEN+1];

Mounted file system.

Page 27 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l AFFS_SUPER_MAGIC 0xADFF
l EXT_SUPER_MAGIC 0x137D
l EXT2_OLD_SUPER_MAGIC 0xEF51
l EXT2_SUPER_MAGIC 0xEF53
l HPFS_SUPER_MAGIC 0xF995E849
l ISOFS_SUPER_MAGIC 0x9660
l MINIX_SUPER_MAGIC 0x137F /* orig. minix */
l MINIX_SUPER_MAGIC2 0x138F /* 30 char minix */
l MINIX2_SUPER_MAGIC 0x2468 /* minix V2 */
l MINIX2_SUPER_MAGIC2 0x2478 /* minix V2, 30 char names */
l MSDOS_SUPER_MAGIC 0x4d44
l NCP_SUPER_MAGIC 0x564c
l NFS_SUPER_MAGIC 0x6969
l PROC_SUPER_MAGIC 0x9fa0
l SMB_SUPER_MAGIC 0x517B
l XENIX_SUPER_MAGIC 0x012FF7B4
l SYSV4_SUPER_MAGIC 0x012FF7B5
l SYSV2_SUPER_MAGIC 0x012FF7B6
l COH_SUPER_MAGIC 0x012FF7B7
l UFS_MAGIC 0x00011954
l XFS_SUPER_MAGIC 0x58465342
l _XIAFS_SUPER_MAGIC 0x012FD16D

Supported file system types in Interix

l ST_FSTYPE_UNKNOWN 0 /* unknown */
l ST_FSTYPE_NTFS 1 /* NTFS */
l ST_FSTYPE_OFS 2 /* OFS-NT object FS */
l ST_FSTYPE_CDFS 3
l ST_FSTYPE_CDROM ST_FSTYPE_CDFS
l ST_FSTYPE_ISO9660 ST_FSTYPE_CDFS
l ST_FSTYPE_FATFS 4 /* MS-DOS FAT FS */
l ST_FSTYPE_MSDOS ST_FSTYPE_FATFS
l ST_FSTYPE_HPFS 5 /* OS2 HPFS */
l ST_FSTYPE_SAMBA 6 /* Samba FS */
l ST_FSTYPE_NFS 8 /* NFS */
l ST_FSTYPE_MAX 8 /* for now */

File system mount entry management

Interix does not support dynamically mounted file systems, as UNIX does. Therefore, Interix does not
include a file to define the mount table.

Mount tables are stored in different files on different implementations of UNIX. They are usually stored
under the /etc directory and have names such as mtab and fstab or mnttab and vfstab.

This is unlikely to impact the migration of an application. However, if the application does use
dynamically mounted file systems, remove the functionality and ensure that the file system is permanently
mounted.

Library porting

Page 28 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Applications still use the gdbm database (that is, an indexed file storage system), which is good at storing
relatively static indexed data. The following APIs are used by an application that uses the gdbm database:

l gdbm_close()
l gdbm_delete()
l gdbm_exists()
l gdbm_fdesc()
l gdbm_fetch()
l gdbm_firstkey()
l gdbm_nextkey()
l gdbm_open()
l gdbm_reorganize()
l gdbm_setopt()
l gdbm_store()
l gdbm_strerror()
l gdbm_sync()

An example of application code using these functions follows:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <gdbm.h>
#include <string.h>

#define TEST_DB_FILE "/tmp/gdbmtest1"
#define NUM_ITEMS 3

struct test_data {
 char some_chars[10];
 int an_integer;
 char more_chars[21];
};

int main() {
 struct test_data data_to_store[NUM_ITEMS];
 struct test_data item_retrieved;

 char key_to_use[20];
 int i, result;

 datum key_datum;
 datum data_datum;

 GDBM_FILE gdbm_ptr;

 gdbm_ptr = gdbm_open(TEST_DB_FILE, 512, O_RDWR | O_CREAT, 0666,
0);
 if (!gdbm_ptr) {
 fprintf(stderr, "Database Open Failed\n");
 exit(EXIT_FAILURE);
 }

/* put some data in the structures */
 memset(data_to_store, '\0', sizeof(data_to_store));
 strcpy(data_to_store[0].some_chars, "First!");
 data_to_store[0].an_integer = 47;

Page 29 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 strcpy(data_to_store[0].more_chars, "Who?");
 strcpy(data_to_store[1].some_chars, "Second");
 data_to_store[1].an_integer = 13;
 strcpy(data_to_store[1].more_chars, "What?");
 strcpy(data_to_store[2].some_chars, "Third");
 data_to_store[2].an_integer = 3;
 strcpy(data_to_store[2].more_chars, "Where?");

 for (i = 0; i < NUM_ITEMS; i++) {
/* build a key to use */
 sprintf(key_to_use, "%c%c%d",
 data_to_store[i].some_chars[0],
 data_to_store[i].more_chars[0],
 data_to_store[i].an_integer);

/* build the key datum structure */
 key_datum.dptr = (void *)key_to_use;
 key_datum.dsize = strlen(key_to_use);
 data_datum.dptr = (void *)&data_to_store[i];
 data_datum.dsize = sizeof(struct test_data);

 result = gdbm_store(gdbm_ptr, key_datum, data_datum,
GDBM_REPLACE);
 if (result != 0) {
 fprintf(stderr, "gdbm_store failed on key %s\n",
key_to_use);
 exit(2);
 }
 } /* for */

/* now try to retrieve some data */
 sprintf(key_to_use, "SW%d", 13); /* this is the key for the
second item */
 key_datum.dptr = key_to_use;
 key_datum.dsize = strlen(key_to_use);

 data_datum = gdbm_fetch(gdbm_ptr, key_datum);
 if (data_datum.dptr) {
 printf("Data retrieved\n");
 memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
 printf("Retrieved item - %s %d %s\n",
 item_retrieved.some_chars,
 item_retrieved.an_integer,
 item_retrieved.more_chars);
 }
 else {
 printf("No data found for key %s\n", key_to_use);
 }

 gdbm_close(gdbm_ptr);

 exit(EXIT_SUCCESS);
}

An attempt to compile this application with the Interix gcc compiler yields output similar to the following:

% gcc -o dbmtest1 dbmtest1.c -ldb
dbmtest1.c:5: gdbm.h: No such file or directory

Porting the GNU gdbm database to Interix

Page 30 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

It is possible to modify the program listed in "Library Porting" to use the older dbm database, which is
supported by Interix. But a better approach that is relatively easy to implement is to port the GNU gdbm
database library to Interix.

To port the gdbm database to Interix

1. Obtain the gdbm compressed tar archive from the GNU Web site.
2. Unzip and extract the archive files into the Interix source tree, for example, at /usr/examples:

$ gunzip < gdbm-1.8.0.tar.gz | tar xf-
$ cd gdbm-1.8.0
$ ls configure
configure

3. Run the resulting configure file.

The script created during the building of the Interix development environment to run configuration
scripts will be used.

The following is an example of the listing that results. The configuration looks good except that it
did not detect Interix's ability to create shared (dynamic) libraries. For further information about
creating shared libraries in Interix, see "Building Applications with Interix," in Chapter 7, Creating
the Development Environment.

$ cat /usr/local/bin/runconfig
set -x
CPPFLAGS="-D_ALL_SOURCE -I/usr/local/include" \
CXXFLAGS="-D_ALL_SOURCE -I/usr/local/include" \
CFLAGS="-D_ALL_SOURCE -I/usr/local/include" \
LDFLAGS="-L/usr/local/lib" \
./configure --prefix=/usr/local \
--host=intel-pclocal-interix $*
$ runconfig
+ ./configure --prefix=/usr/local --host=intel-pclocal-interix
+ CPPFLAGS=-D_ALL_SOURCE -I/usr/local/include CXXFLAGS=-
D_ALL_SOURCE -I/usr/local/include CFLAGS=-D_ALL_SOURCE \
-I/usr/local/include LDFLAGS=-L/usr/local/lib
creating cache ./config.cache
checking for gcc... gcc
checking whether the C compiler (gcc -D_ALL_SOURCE –
I/usr/local/include -L/usr/local/lib) works... yes
checking whether the C compiler (gcc -D_ALL_SOURCE –
I/usr/local/include -L/usr/local/lib) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking how to run the C preprocessor... gcc -E
checking for a BSD compatible install... /bin/install -c
checking host system type... intel-pclocal-interix
checking for ranlib... :
checking for ld used by GCC... /usr/contrib/bin/ld
checking if the linker (/usr/contrib/bin/ld) is GNU ld... yes
checking for BSD-compatible nm... /bin/nm -B
checking whether ln -s works... yes
checking for gcc option to produce PIC... -fPIC
checking if gcc PIC flag -fPIC works... yes
checking if gcc static flag -static works... -static
checking if the linker (/usr/contrib/bin/ld) is GNU ld... yes

Page 31 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

checking whether the linker (/usr/contrib/bin/ld) supports shared
libraries... no
checking command to parse /bin/nm -B output... no
checking how to hardcode library paths into programs...
unsupported
checking for /usr/contrib/bin/ld option to reload object files...
-r
checking dynamic linker characteristics... no
checking if libtool supports shared libraries... no
checking whether to build shared libraries... no
checking whether to build static libraries... yes
checking for objdir... .libs
creating libtool
checking for working const... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for sys/file.h... yes
checking for unistd.h... yes
checking for fcntl.h... yes
checking for sys/types.h... yes
checking for memory.h... yes
checking for main in -ldbm... no
checking for main in -lndbm... no
checking for rename... yes
checking for ftruncate... yes
checking for flock... yes
checking for bcopy... yes
checking for fsync... yes
checking for getopt... yes
checking for ANSI C header files... yes
checking for off_t... yes
checking for st_blksize in struct stat... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
creating autoconf.h

4. Run the make command.

$ make

You should see output similar to the following results:

/bin/sh ./libtool --mode=compile gcc -c -I. -I. -O dbminit.c
gcc -c -I. -I. -O dbminit.c
 .
 .
: .libs/libgdbm.a
creating libgdbm.la
(cd .libs && ln -s ../libgdbm.la libgdbm.la)

5. Now, install the gdbm libraries, man pages, info pages and commands.

$ make install

You should see output similar to the following results:

/mkinstalldirs /usr/local/lib /usr/local/include
/usr/local/man/man3 /usr/local/info

Page 32 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

mkdir /usr/local/man/man3
mkdir /usr/local/info
/bin/sh ./libtool install -c libgdbm.la /usr/local/lib/libgdbm.la
install -c libgdbm.la /usr/local/lib/libgdbm.la
install -c .libs/libgdbm.a /usr/local/lib/libgdbm.a
: /usr/local/lib/libgdbm.a
chmod 644 /usr/local/lib/libgdbm.a
--
Libraries have been installed in:
 /usr/local/lib

To link against installed libraries in a given directory, LIBDIR, you must use the -LLIBDIR flag
during linking.

6. You will also need to do one of the following:

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--
/bin/install -c -m 644 -o bin -g bin gdbm.h
/usr/local/include/gdbm.h
install: unknown group bin
*** Error code 1

Stop.

In this setup the installation of the header file gdbm.h failed because Interix does not have the
standard UNIX bin user or group. The following steps resolve this.

7. To ensure that the header file gdbm.h is installed you can either:
l Run the following:

$ /Table 10/install -c -m 644 -o COMPUTERNAME+Administrator -g
+Administrators gdbm.h /usr/local/include/gdbm.h

l Or change the Makefile, before running: make install

Modify the Makefile to the following:

#TABLE 10 = bin
TABLE 10 = COMPUTERNAME+Administrator
#TABLE 10 = bin
TABLE 10 = +Administrators

where COMPUTERNAME is the name of the computer that the make install command is
being executed on.

You can determine COMPUTERNAME by entering "hostname" (without the quotes) at a
command prompt.

Now try to build the application again:

$ Table 10 -o dbmtest1 dbmtest1.c –
I/usr/local/include-lgdbm
$./Table 10

Page 33 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

You should see output similar to the following results:

Table 10 retrieved
Table 10 item - Second 13 What?
Table 10!

Interprocess Communication

Interix supports all the various forms of Interprocess Communication (IPC). The forms most familiar to
UNIX developers are discussed in the following sections:

l Ordinary or Anonymous pipes
l Named pipes
l Message queues
l System V IPC mechanisms

Ordinary (Anonymous) Pipes

Process pipes are supported under Interix by using the standard C runtime library. Interix supports all the
pipe function calls, including popen, pclose and pipe. There is no need to change any references to these
calls in your code.

Pipes are frequently used between UNIX processes to connect the standard output file descriptor of one
process to the standard input file descriptor of a second process, causing the results of the first program to
be treated as the input data of the second. This sequence of commands is called a "pipeline".

This mechanism works unchanged under Interix when connecting Interix processes. It is possible to use
this same mechanism to connect an Interix process to a Win32 process that it creates. In nearly all cases,
everything works as is without any change. Problems with using pipes to communicate between Interix
and Win32 processes generally fall into two categories:

l Line termination character. Interix defines a line as ending with the \n character; Win32 defines
lines as ending with the \r\n sequence. Some applications are sensitive to the precise line termination
sequence. Use the flip command in the pipe to change line termination as necessary.

l End Of File (EOF) handling when attempting serial use of a pipe. Once a Win32 process has closed
a pipe it is writing to, it is not possible for an Interix application to serially use that pipe. For
example, this command will display only the contents of file1:

(cmd.exe /c type file1; cat file2) | cat

By introducing a second pipeline using the cat32 utility, this problem can be solved using this
command:

(cmd.exe /c type file1; cat file2 | cat32) | cat

Named Pipes (FIFOs)

Interix also supports named pipes. These are also referred to as First in First Out (FIFO). A named pipe is
a special type of that is created in the file system (with the mknod or mkfifo function calls or command
line programs), but behaves like process pipes.

Page 34 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Interix supports the two function calls for creating a named pipe, mknod and mkfifo. If possible, use
mkfifo for making FIFO special files because it is more portable.

Again, it is not necessary to modify code that uses these functions for it to compile under Interix.

These named pipes are distinct from, and not interoperable with, the identically named Win32 interprocess
communication mechanism. The only way to use Win32 named pipes to communicate between Interix and
Win32 processes is through ordinary pipes, as described above.

For examples of UNIX code that ports to Interix without modification, see the following sections in
Chapter 9 , Win32 Code Conversion:

l "Creating a Named Pipe"
l "Opening a FIFO"
l "Interprocess Communication with FIFOs"

Message Queues

Message queues are very similar to named pipes, but there is no need to open and close pipes. Interix
supports all the message queue routines, msgctl, msgget, msgrcv, and msgsnd. Code that uses these
functions does not need to be modified.

System V IPC mechanisms

Interix includes support for the System V IPC shared memory and semaphore mechanisms. (For more
information, see the discussion in "Memory Management" in this chapter.) Code that uses these
mechanisms should not need changes to compile under Interix.

For an example of UNIX code that ports to Interix without modification, see "Memory Mapped Files" in
Chapter 9, Win32 Code Conversion.

For an example of UNIX shared memory code that ports to Interix without modification, see "Shared
Memory" in Chapter 9, Win32 Code Conversion.

Sockets and Networking

The Interix Software Development Kit (SDK) implements BSD-style socket interfaces, including bind(),
accept(), and connect(). The Interix SDK implementation uses the Windows Winsock library to access the
network. This means that TCP/IP sockets and all of the installed Winsock protocols are supported.

For more information about Winsock, see the Winsock documentation.

Exceptions to socket support in Interix are discussed in the following sections:

l Host name to address translation
l Network groups
l Network socket calls
l Transport level interface calls

Host Name to Address Translation

Page 35 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Interix does not support the generic transport name-to-address translation routines. Interix does support the
gethostby routines, except for the re-entrant versions (that is, routines with the _r suffix). Table 18 shows
other host or domain name get or set routines not supported by Interix.

Table 18. Host name translation routines not supported by Interix

Network Groups

Interix does not currently support the network group APIs. However, it does support network group
designations in hosts.equiv and .rhosts files.

Network Socket Calls

These functions constitute the BSD sockets library, libsocket.a. This library is not automatically linked by
the C compilation system, so the -lsocket option must be included on the gcc or cc command line to link
with this library.

Interix supports all the socket calls except those summarized in Table 19 and Table 20.

Table 19. Socket calls not supported by Interix

Function name Description Suggested Interix replacement
getdomainname Gets the NIS domain name. No equivalent in Interix. The

principal Windows domain for the
system can be obtained through
getpdomain().

Gethostid Gets the unique identifier of the
current host.

No equivalent in Interix, but should
be a very rare occurrence in any
application except a network
administration application.

gethostbyaddr_r,
gethostbyname_r, gethostent_r

Re-entrant "safe" versions. Replace with equivalents lacking
the _r suffix. Interix is not
multithreaded, and therefore does
not need to support the re-entrant
versions.

setdomainname Sets the NIS domain name. No equivalent in Interix.
Sethostid Sets the unique identifier of the

current host.
No equivalent in Interix, but should
never need to be set. It is restricted
to the root user account.

sethostname Sets the name of the host machine.
(This call is restricted to the
superuser and is normally used
only when the system is booted.)

No equivalent in Interix.

Function name Description Suggested Interix replacement
cmsg macros Access ancillary data No equivalent in Interix.
freeaddrinfo Removes address entry from

linked list.
Currently no API support for IPv6

freehostent Removes IP node entry from
linked list.

Currently no API support for IPv6

Page 36 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

The two sockets functions recvmsg and sendmsg appear in many network applications but are not
supported by Interix. These functions are the only way to pass an open file descriptor from one running
process to another running process.

For examples of UNIX code using sockets that port directly to Interix, see "Sockets and Networking" and
"Sockets Example" in Chapter 9, Win32 Code Conversion.

Each re-entrant interface performs the same operation as its non-re-entrant counterpart. The only
difference is the _r suffix. The re-entrant interfaces, however, use buffers supplied by the caller to store
returned results, and they are safe for use in both single-threaded and multithreaded applications. If the
application is not multithreaded, then the _r routines can be safely replaced by removing the _r suffix and
the additional parameters.

Table 20. Interix replacements for re-entrant routines

gai_strerror Helps applications print error
messages based on the EAI_*
codes returned by getaddrinfo.

Currently no API support for IPv6

getaddrinfo Translates between node name and
address.

Currently no API support for IPv6

getipnodebyaddr Gets IP node entry. Currently no API support for IPv6
getipnodebyname Gets IP node entry. Currently no API support for IPv6
getnameinfo Translates between node name and

address.
Currently no API support for IPv6

inet_ntop Process network address structures Currently no API support for IPv6.
inet_pton Create a network address structure Currently no API support for IPv6.
rcmd_af Returns a stream to a remote

command and includes support for
Ipv6.

Currently no API support for IPv6.

Recvmsg Receives a message from a socket. No equivalent in Interix.
rexec_af Returns a stream to a remote

command and includes support for
Ipv6.

Currently no API support for IPv6.

Rresvport_af Currently no API support for IPv6.
Sendmsg Sends a message to a socket. No equivalent in Interix.

Function name Description Suggested Interix replacement
getnetbyaddr_r Searches for a network entry with

the network address.
getnetbyaddr

getnetbyname_r Searches for a network entry with
specified name.

getnetbyname

getnetent_r Enumerates network entries from
the database.

getnetent

getprotobyname_r Sequentially searches from the
beginning of the file until a
matching protocol name is found,
or EOF is encountered.

getprotobyname

getprotobynumber_r Sequentially searches from the
beginning of the file until a
matching protocol number is

getprotobynumber

Page 37 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Transport Level Interface (XTI) Calls

The XTI APIs, defined by The Open Group's X/Open Transport Interface specification, define protocol-
independent networking functions similar to those provided by the old SVR4 TLI (Transport Level
Interface) APIs. XTI, and TLI before it, were primarily used as interfaces to the ISO OSI protocol family
or to the STREAMS networking stack. In general, use of XTI should be replaced by use of the more
standard BSD Sockets interface.

Interix support for XTI is limited solely to the functions and features required to access the UDP Internet
protocol. Interix does not support some extended calls (see Table 21), which are mainly used with
"expedited data" and the management or configuration of variables and parameters.

Table 21. Transport level interface calls not supported by Interix

The Process Environment

found, or EOF is encountered.
getprotoent_r Gets a matching protocol name. getprotoent
getservbyname_r Returns a pointer to an object

containing the information from a
network services database.

getservbyname

getservbyport_r Returns a pointer to an object
containing the information from a
network services database.

getservbyport

getservent_r Returns a pointer to an object
containing the information from a
network services database.

getservent

Function name Description Suggested Interix replacement
nlsgetcall Gets client data passed via the

listener.
No equivalent in Interix.

nlsprovider Gets the name of the transport
provider.

No equivalent in Interix.

nlsrequest Formats and sends a listener
service request message.

No equivalent in Interix.

t_rcvv Receives data or expedited data
sent over a connection and puts
data into one or more
noncontiguous buffers greater than
or equal to.

No equivalent in Interix.

t_rcvvudata Receives a data unit in one or
more noncontiguous buffers.

No equivalent in Interix.

t_sndv Sends data or expedited data from
one or more noncontiguous
buffers on a connection.

No equivalent in Interix.

t_sndvudata Sends a data unit from one or
more noncontiguous buffers.

No equivalent in Interix.

t_sysconf Gets configurable XTI variables. No equivalent in Interix.

Page 38 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Some of the key elements in the process environment differ between UNIX and Interix. This section
discusses these key elements and how you implement them in Interix:

l Environment variables
l Using stdarg and varargs
l Temporary files
l Computer information
l Logging system messages

Environment Variables

An environment block is a block of memory allocated within the process address space. Each block
contains a set of name value pairs. All UNIX variants support process environment blocks. The particular
differences between Interix and other UNIX variants depend on which UNIX variant is being ported to
Interix. For example, some UNIX variants do not support either the setenv or unsetenv function calls,
whereas Interix does.

There are usually no issues in porting calls to environment variable functions to Interix. However, when
porting System V Interface Definition (SVID) code, instead of the process environment being defined as a
third argument to main(), it is defined as extern char **environ. To modify the environment for the
current process, use getenv() and putenv(). To modify the environment to be passed to a child process,
use getenv(), setenv(), and putenv(), or build a new environment and pass it to the child by using the
envp argument of exec().

For an example of UNIX code using these functions that ports to Interix without modification, see
"Environment Variables" in Chapter 9, Win32 Code Conversion.

Using stdarg and varargs

Rather than conflict with the historical routines in varargs.h, the International Standards
Organization/American National Standards Institute (ISO/ANSI) C standard defines stdarg.h, a new
mechanism for dealing with variable argument lists. The varargs mechanism uses a magic name, va_alist,
for the first argument in a list; stdarg uses the last required argument. This means that stdarg must have at
least one named parameter. The Interix SDK ships both headers, so there is no need to convert from one to
the other. For ANSI standard code, convert from varargs to stdarg.

Usually, it is possible to translate easily from varargs to stdarg because most functions with variable
argument lists have a known first-argument type.

The following examples show how code using varargs is rewritten to use stdarg. The first example is a
trivial, error-printing function that uses the varargs mechanism:

#include <varargs.h>
printerror(va_alist);
void printerror (va_alist)
va_dcl
{
 va_list ap;
 char *fmt;
 va_start(ap);
 fmt = va_arg(ap, char *);
 vprintf(stderr, fmt, ap);
 va_end(ap);

Page 39 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

}

The next example shows how the code is changed when stdarg is used to replace varargs. Because the
function in the previous example uses a format string as its first argument, it can easily be used as the
known argument in the function in the following example:

#include <stdarg.h>
void printerror (char *fmt, ...)
{
 va_start(ap, fmt);
 vfprintf(stderr, fmt, ap);
 va_end(ap);
}

The first argument must be given a name, even when the routine takes a terminated list and no fixed
arguments. For example, the following function prints a set of strings, but the first argument is entirely
artificial, created to meet the needs of the stdarg package:

#include <stdarg.h>
pr_str(char *first, ...)
{
 char * current;
 va_list argp;
 va_start(argp,first);
 current = first;
 while (current != NULL){
 fputs(current,stdout);
 current = va_arg(argp, char *);
 }
 va_end(argp);
}

The following examples show the use of conditional compilation that uses the ANSI flag to provide
backward compatibility.

The original application, var.c, passes a variable number of arguments by using va_start, va_arg,
va_end, va_list and va_dcl (UNIX only):

/* var.c: The program below illustrates passing a variable
 * number of arguments using the following macros:
 * va_start va_arg va_end
 * va_list va_dcl (UNIX only) */
#include <stdio.h>
#include <varargs.h>
int average(va_list);
int main(void)
{
 /* Call with 3 integers (-1 is used as terminator). */
 printf("Average is: %d\n", average(2, 3, 4, -1));

 /* Call with 4 integers. */
 printf("Average is: %d\n", average(5, 7, 9, 11, -1));
 /* Call with just -1 terminator. */
 printf("Average is: %d\n", average(-1));
}
/* Returns the average of a variable list of integers. */

Page 40 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

int average(va_alist)
va_dcl
{
 int count = 0, sum = 0, i ;
 va_list marker;
 i = va_arg(marker, int);
 va_start(marker);
 while(i != -1)
 {
 sum += i;
 count++;
 i = va_arg(marker, int);
 }
 va_end(marker); /* Reset variable arguments.
*/
 return(sum ? (sum / count) : 0);
}

When compiled, the following errors display. The errors occur because Interix does not support the pre-
ANSI version of args available in varargs.h.

var.c: In function `main':
var.c:11: warning: passing arg 1 of `average' makes pointer from
integer without a cast
var.c:11: too many arguments to function `average'
var.c:14: warning: passing arg 1 of `average' makes pointer from
integer without a cast
var.c:14: too many arguments to function `average'
var.c:16: warning: passing arg 1 of `average' makes pointer from
integer without a cast
var.c: In function `average':
var.c:20: argument `__builtin_va_alist' doesn't match prototype
var.c:7: prototype declaration

To modify the code to work on Interix but still retain backward compatibility with pre-ANSI version,
introduce the flag #ifdef ANSI and write the ANSI version for varargs as listed below:

/* var2.c: The program below illustrates passing a variable
 * number of arguments using the following macros:
 * va_start va_arg va_end
 * va_list va_dcl (UNIX only) */
#include <stdio.h>
#define ANSI /* Comment out for Pre-ANSI version */
#ifdef ANSI /* ANSI compatible version */
#include <stdarg.h>
int average(int first, ...);
#else /* Pre-ANSI version */
#include <varargs.h>
int average(va_list);
#endif
int main(void)
{
 /* Call with 3 integers (-1 is used as terminator). */
 printf("Average is: %d\n", average(2, 3, 4, -1));
 /* Call with 4 integers. */
 printf("Average is: %d\n", average(5, 7, 9, 11, -1));
 /* Call with just -1 terminator. */
 printf("Average is: %d\n", average(-1));
}

Page 41 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

/* Returns the average of a variable list of integers. */
#ifdef ANSI /* ANSI compatible version */
int average(int first, ...)
#else
int average(va_alist)
va_dcl
#endif
{
 int count = 0, sum = 0, i ;
 va_list marker;
#ifdef ANSI
 i = first;
 va_start(marker, first); /* Initialize variable arguments.
*/
#else
 i = va_arg(marker, int);
 va_start(marker);
#endif
 while(i != -1)
 {
 sum += i;
 count++;
 i = va_arg(marker, int);
 }
 va_end(marker); /* Reset variable arguments.
*/
 return(sum ? (sum / count) : 0);
}

Temporary Files

Interix supports functions that create temporary files. It is not necessary to modify code to migrate these
functions to Interix.

For an example of UNIX code using these functions that ports to Interix without modification, see
"Temporary Files" in Chapter 9, Win32 Code Conversion.

Computer Information

Interix supports functions that obtain information about the machine the application is executing on. No
modifications to ported code are typically required.

This information includes the following:

l Host name
l Operating system name
l Network name of the machine
l Release level of the operating system
l Version number of the operating system
l Hardware platform name

The same information can be obtained by using the uname -a Interix shell command.

For an example of UNIX code using these functions that ports to Interix without modification, see
"Computer Information" in Chapter 9, Win32 Code Conversion.

Page 42 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Logging System Messages

Interix provides the standard UNIX syslogd daemon for storing and rerouting log messages from
applications and system services. The Interix syslogd daemon handles only Interix processes that were
designed to use the syslog API. It does not handle log messages from the Win32 subsystem. If syslogd is
not running, all messages intended for syslogd are appended to the file /var/adm/log/logger.

The syslog, vsyslog, openlog, closelog and setlogmask function calls are all supported by Interix with the
same set of severity levels, including:

l LOG_ALERT
l LOG_CRIT
l LOG_DEBUG
l LOG_EMERG
l LOG_ERR
l LOG_INFO
l LOG_NOTICE
l LOG_WARNING

There is also a superset of facility indicators, including:

l LOG_AUTH
l LOG_CRON
l LOG_DAEMON
l LOG_KERN
l LOG_LOCAL(0-7)
l LOG_LPR
l LOG_MAIL
l LOG_NEWS
l LOG_USER
l LOG_UUCP

It is not necessary to modify code that uses syslog calls on Interix.

For an example of UNIX code using these functions that ports to Interix without modification, see
"Logging System Messages" in Chapter 9, Win32 Code Conversion.

Daemons and Services

A UNIX daemon is a process that provides a specific service or services, such as:

l The inetd daemon listens for connections on certain Internet sockets.
l The nfsd daemon implements the user-level part of the NFS (directory/file sharing) services.
l The syslogd daemon provides system utilities that provide support for system logging and kernel

message trapping.

On traditional UNIX systems, a daemon is a process that runs for an extended period of time, but does not
have a controlling terminal. A Windows service is a background process that is similar to a daemon
process. Daemons can be ported to the Interix subsystem by using the service interface.

Many daemons use setuid() or seteuid() to run as a particular user. This does not work on Windows,

Page 43 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

however, because of the way in which Windows security is structured. A daemon invoked by inetd does
not have these restrictions. It inherits the environment of the inetd process. In this context, the term
daemon refers to a daemon process invoked by an Interix process that runs in the context of the Interix
subsystem. An Interix service is an Interix process that is tied to the Win32 execution environment by the
psxrun.exe program.

Code for traditional daemons is written differently from code for Windows services. Some of the rules for
coding daemons can cause problems if they are applied to writing code for Windows services.

The Interix SDK contains the same daemon() interface that is found on BSD systems. Because the
daemon() API uses fork() and setsid(), it should be used only in daemons that will be invoked by inetd or
other master daemons.

Note Interix includes ports of both the inetd and syslogd daemons and makes them available
as Windows services.

Porting a UNIX Daemon to Interix

This section discusses porting a UNIX daemon to Interix and calling that daemon from either inetd or
another master daemon. Daemons ported in this way cannot be run as a Windows service. If a daemon
needs to run as a Windows service, use the instructions in the section "Porting a UNIX Daemon to an
Interix Service."

When porting a daemon for UNIX to Interix, the daemon should already have the features described in the
list below. For an example, see the code listing for a UNIX (and Interix) daemon in "Example–Interix
Daemon Code" later in this chapter.

l A daemon must first use fork to fork and then use exit. The child process created by the fork must
then create a session and set the process group ID by calling setsid.

The fork() function is required because the current process is already a process group leader, which
would otherwise cause the call to setsid() to fail. By using the call to setsid() in the child process, it
becomes the leader of the new session and the process group leader of the new process group, and it
has no controlling terminal. This is necessary for a daemon process. The parent process exits: It is
no longer needed because the daemon code runs as the child.

l The signal handling routine (terminate, in this case) is a common characteristic of a daemon process.
By using it, the daemon can perform cleanup operations when it receives the SIGTERM signal (for
example, when the system shuts down). To use the terminate handling routine, the daemon must call
the signal() system call, which installs its signal handler for the SIGTERM signal.

Porting this daemon is a simple process. All that is needed is to recompile, relink, and execute the daemon
from the command line.

To port the daemon

1. Recompile and relink the UNIX daemon by using gcc:

$ gcc -o msgd msgd.c
$./msgd &

Page 44 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

2. Compile the test program found in "Test Client for Interix Daemon" by using the following
command:

$ gcc -o msg msg.c

3. Launch the test application (msg) that will interact with the Interix daemon by entering the
following command:

$./msg

Output similar to the following appears. (Input is shown in bold.)

Enter some text: what
msgd received: WHAT
Enter some text: Where are we?!
msgd received: WHERE ARE WE!
Enter some text: end
msgd received: END
$

4. To obtain information about the Interix processes executing on the Windows-based system, enter the
following command:

$ ps-ef

Notice that ./msgd is listed with a parent process of 1. This is the UNIX init process, the parent of
all UNIX and Interix processes. Its primary role is to create processes from a script stored in the
file /etc/inittab. It also controls autonomous processes required by any particular system.

Note Interix does not use /etc/inittab because it only runs at runlevel 2, multi-user,
without NFS.

5. Terminate the Interix daemon process by entering the following command:

$ kill <pid of ./msgd>

(The PID of ./msgd is found under the PID heading.)

The msgd daemon is successfully ported to Interix.

The majority of daemons port directly to Interix, other coding issues apart. However, porting a daemon to
an Interix service requires some changes, as discussed in "Porting a UNIX Daemon to an Interix Service,"
below.

Porting a UNIX Daemon to an Interix Service

An Interix daemon has a number of limitations: It can be called only from a master daemon, and it is not
integrated into the Windows service mechanisms. When a daemon is converted into a service, it can be
managed from the Windows Control Panel Services item, as well as from the Interix command line.

Before going into more details on how to convert a daemon into a service, it is important to mention two
commands that can help tie Interix processes to the Win32 execution environment:

Page 45 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

l The posix.exe program starts an Interix process with a controlling terminal.
l The psxrun.exe program starts an Interix process without a controlling terminal.

In the case of a Windows service, the process must run without a controlling terminal, so psxrun is
required.

Interix services can be administered by using the Windows Control Panel Services item or by using the
service utility provided with Interix.

The service utility is used to install the service as a particular user and to stop the service. The user name
and password must be provided when the service is installed. If no user name is provided, the user defaults
to LocalSystem, which provides an administrative login without network access. When a request to kill a
particular service comes from either the Windows Control Panel Services item or from the service utility,
psxrun sends the signal SIGTERM to the service.

Converting daemon code into Interix service code

To convert daemon code into Interix service code, the daemon code needs the following modifications:

l Ensure that the service exits when it receives the SIGTERM signal.

It should catch the SIGTERM signal, clean up, and shut down. Ideally, the service should not spend
more than a few seconds cleaning up. Otherwise, there can be detrimental interactions with the
Service Control Manager, such as lost communications.

l Use the daemon() interface to create the service.

Using the daemon interface makes it easier to create the service because it causes the calling
program to fork. Then, the parent exits and the child performs a setsid(). This disassociates the
process from its current process group, session and controlling terminal. On successful completion
of this call, the process is the session leader of a group in which it is the only member, and the
session has no controlling terminal.

l Change the code so that it does not fork and then the parent exits.

If the parent process exits, psxrun treats the program as having exited, and the Windows Service
Control Manager reports that the service was never successfully started.

l Do not call setsid() to create a new session.

This does not work because of Windows Security. Use #ifdef to skip that code, and then replace it
with a simple exec_asuser() call, or install the service as a particular user. The psxrun.exe program
already ensures that the service process is a session leader.

l Do not access network drives from the daemon.

Network drives are typically mounted on drive letters when a user logs in, then unmounted when
that user logs out. A service program cannot depend on a given network drive being mounted on a
given drive letter. If a service uses net.exe to mount a network drive, the drive letter it uses will
become unavailable to interactive users, which may cause winlogon.exe to display error messages.
If a service must access a network drive, then reserve specific drive letters for exclusive use by the

Page 46 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

system.

For an example of these code and compilation steps, see the listing in "Example–Interix Service," where
the code in "Example–Interix Daemon Code" has been converted into an Interix service.

Installing a daemon as a service

The service utility is required to install a daemon as a service. This utility can also be used to start and
stop the service. The user name and password must be provided when the service is installed. If no user
name is provided, the user defaults to LocalSystem, which provides an administrative login without
network access. When a request comes from either Windows Control Panel Services or from the service
utility to kill a particular service, psxrun sends the signal SIGTERM to the service. This is why the proper
response to the SIGTERM signal is important.

To install and start the Windows (daemon) service, enter the following commands:

$ service install ./wmsgd -s auto
$ service start wmsgd

Functions to Change for Interix

This section describes functions that need to be changed or removed before code will compile under
Interix. These functions include:

l Math routines. (See "Math Routines" below.)
l Regular expressions. (See "Regular Expressions" below.)
l System and C library and other platform-specific APIs. (See "System/C Library and Miscellaneous

APIs" below.)
l Extended UNIX Code (EUC) characters are not supported by Interix and should not be used.
l Wide character-type APIs are not supported by Interix and should not be used.
l Multibyte character-type APIs (ISO/ANSI C and UNIX98) are not supported by Interix and should

not be used.
l Long-long character type (64-bit integer) APIs are not supported by Interix and should not be used.
l Message handling APIs are not supported by Interix and should not be used.

Math Routines

There are two sets of mathematical routines not supported by Interix: IEEE floating-point environment
control routines and conversion routines.

Interix does not support IEEE floating-point environment control routines, as shown in Table 22.

Table 22. IEEE floating-point environment control routines not supported by Interix

Function Suggested Interix replacement
Fpclass No equivalent in Interix.
fpgetmask No equivalent in Interix.
fpgetround No equivalent in Interix.
fpgetsticky No equivalent in Interix.
fpsetmask No equivalent in Interix.

Page 47 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Interix does not support conversion routines (such as converting decimal record to double), as shown in
Table 23.

Table 23. Conversion routines not supported by Interix

Regular Expressions

Interix does not support some of the regular expression function calls. However, Table 24 lists functions
that can be used to replace them.

Table 24. Regular expression function calls not supported by Interix

fpsetround No equivalent in Interix.
fpsetsticky No equivalent in Interix.

Function Suggested Interix replacement
decimal_to_double No equivalent in Interix.
decimal_to_extended No equivalent in Interix.
decimal_to_floating No equivalent in Interix.
decimal_to_quadruple No equivalent in Interix.
decimal_to_single No equivalent in Interix.
double_to_decimal No equivalent in Interix.
Econvert No equivalent in Interix.
Extended_to_decimal No equivalent in Interix.
Fconvert No equivalent in Interix.
File_to_decimal No equivalent in Interix.
floating_to_decimal No equivalent in Interix.
func_to_decimal No equivalent in Interix.
Gconvert No equivalent in Interix.
qeconvert No equivalent in Interix.
Qfconvert No equivalent in Interix.
qgconvert No equivalent in Interix.
quadruple_to_decimal No equivalent in Interix.
seconvert No equivalent in Interix.
Sfconvert No equivalent in Interix.
sgconvert No equivalent in Interix.
single_to_decimal No equivalent in Interix.
string_to_decimal No equivalent in Interix.

Function Description Suggested Interix replacement
re_comp Compiles and executes a regular

expression and returns character
pointer to NULL on success.

regcomp(), regexec()

re_exec Compiles and executes a regular
expression and return integer of 0
or 1 on success.

regcomp(), regexec()

Regcmp Compiles a regular expression and
returns pointer to compiled form.

regcomp()

Page 48 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

System/C Library and Miscellaneous API

Under this category are many specialized, platform-specific APIs, including the following:

l Command-line and shell APIs. (See the section below.)
l String manipulation functions. (See the section below.)
l BSD string and bit functions. (See the section below.)
l Time handling APIs. (See the section below.)
l Other system/C library functions. (See the section below.)
l Kernel calls are not supported by Interix and should not be used.

Command-line and shell APIs

Interix does not support calls to obtain information about legal user shells from the /etc/shells file, nor
does it support the implementation of the popt command-line parser.

Make these changes in Interix for code that uses this feature:

1. Create an /etc/shells file containing the legal Interix shells /bin/csh, /bin/ksh, /bin/sh, /bin/tcsh.
2. Add to this file any additional legal shells that have been ported, such as /bin/bash.
3. Write functions called endusershell, getusershell, and setusershell, as described in Table 25.

Table 25. Functions to implement the command-line and shell APIs in Interix

String manipulation functions

Interix supports most of the standard string handling functions. Interix does not support atoq, memmem,
stpcpy, stpncpy, strfmon, strfry, strnlen and strtows, which need to be replaced as shown in Table
10.26.

Table 10.26 String handling functions not supported by Interix

Regex Executes a regular expression. regexec()

Function name Description Suggested Interix replacement
endusershell Closes the file of legal user shells

(/etc/shells).
Create endusershell routine to
wrap the standard close() file
routine.

getusershell Gets legal user shells
from /etc/shells.

Create getusershell routine to wrap
the standard read() file routine.

Popt Parses command-line options getopt()
setusershell Rewinds the file of legal user

shells (/etc/shells).
Create setusershell routine to wrap
the standard lseek() file routine to
set /etc/shells file back to
beginning.

Function name Description Suggested Interix replacement
Memmem Finds the start of the first

occurrence of a substring in the
memory area.

strstr()

Page 49 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

BSD string and bit functions

String interfaces specified by ANSI/ISO C are in String.h. String interfaces found only in the Single UNIX
Specification are in Strings.h. The Strings.h file contents are described in Table 27.

Table 27. String interfaces found in the Strings.h file

The Interix SDK also supports the BSD 4.4 strsep() and strcasestri() routines.

Time handling APIs

The time functions that are not supported by Interix and that cannot be implemented by some other Interix
API or set of API calls are adjtime, adjtimex, ntp_adjtime and tzsetwall.

Other system/C library functions

Interix does not support some of the system/C library functions. Table 28 summarizes these functions.

Table 28. System/C library functions not supported by Interix

Stpcpy Copies source string, including the
terminating '\0' character, to
destination.

strcpy()

Stpncpy Copies at most num characters
from source string, including the
terminating '\0' character, to
destination.

strncpy()

Strfmon Formats specified amounts
according to the format
specification and places the result
in a character array of size max.

sprintf()

Strfry Randomizes the contents of string
by using rand() to randomly swap
characters in the string.

Customize strfry by using rand().

Strnlen Returns the number of characters
in the string, not including the
terminating '\0' character, but at
most maxlen

strlen()

Function name Description Suggested Interix replacement
Bcmp Compares two strings. strcmp()
Bcopy Copies at most n characters from

src string to dest.
strncpy()

Bzero Places len value of 0 bytes in the
string.

memset (string, 0, len)

ffs Finds the first bit set (beginning
with the least significant bit) and
returns the index of that bit.

Interix supports ffs.

Function name Description Suggested Interix replacement

Page 50 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Code Examples

These sections contain code examples to illustrate the migration techniques:

l Test Client for Interix Daemon
l Example–Interix Daemon Code
l Example–Interix Service

Test Client for Interix Daemon

The program used to test the example daemon (msg) is listed in this section.

$ cat msg.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st {
 long int my_msg_type;
 char some_text[MAX_TEXT];
};

int main()
{
 int running = 1;
 struct my_msg_st some_data;
 int out_msgid, in_msgid;
 long int msg_to_receive = 0;
 char buffer[BUFSIZ];

/* First, connect to the input message queue. */

 in_msgid = msgget((key_t)1235, 0666);
 if (in_msgid == -1) {
 fprintf(stderr, "msgget failed with error: %d\n", errno);
 exit(EXIT_FAILURE);
 }

/* Next, connect to the output message queue. */
 out_msgid = msgget((key_t)1234, 0666);

on_exit Registers a function to be called at
normal program termination.

atexit(void (*function)(void))
Note: This function does not
provide for argument passing as
on_exit does.

Quotactl Manipulates disk quotas. No support or equivalent in Interix.
Stime Sets time. No support or equivalent in Interix.

Page 51 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 if (out_msgid == -1) {
 fprintf(stderr, "msgget failed with error: %d\n", errno);
 exit(EXIT_FAILURE);
 }

 while(running) {
 printf("Enter some text: ");
 fgets(buffer, BUFSIZ, stdin);
 some_data.my_msg_type = 1;
 strcpy(some_data.some_text, buffer);

 if (msgsnd(out_msgid, (void *)&some_data, MAX_TEXT, 0) == -1)
{
 fprintf(stderr, "msgsnd failed\n");
 exit(EXIT_FAILURE);
 }

 if (msgrcv(in_msgid, (void *)&some_data, BUFSIZ,
 msg_to_receive, 0) == -1) {
 fprintf(stderr, "msgrcv failed with error: %d\n", errno);
 exit(EXIT_FAILURE);
 }

 printf("msgd received: %s", some_data.some_text);

 if (strncmp(buffer, "end", 3) == 0) {
 running = 0;
 }
 }

 exit(EXIT_SUCCESS);
}

Example–Interix Daemon Code

This example daemon provides an ASCII character conversion service by using one System V (IPC)
message queue for input and one for output. It waits for input on the input message queue (1234), converts
all lowercase ASCII characters to uppercase, and returns the result to the output message queue (1235).

$ cat msgd.c

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX_TEXT 512

 int in_msgid, out_msgid;

/* This function reacts to the signal which is passed in the
parameter sig.
 This function is called when a signal occurs.
 This signal is "normally" received during a system shutdown,

Page 52 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 and this is where cleanup is performed.
 In this case the Input and Output message queues are deleted.
*/
void terminate(int sig)
{
/* Close the input message queue */
 if (msgctl(in_msgid, IPC_RMID, 0) == -1)
 fprintf(stderr, "msgctl failed (input queue) error: %s\n",
strerror(errno));

/* Close the output message queue */
 if (msgctl(out_msgid, IPC_RMID, 0) == -1)
 fprintf(stderr, "msgctl failed (output queue) error: %s\n",
strerror(errno));

 exit(0);
}

struct my_msg_st {
 long int my_msg_type;
 char some_text[BUFSIZ];
};

/* The main daemon function must intercept the SIGTERM signal
generated
 for example when the system shuts down.
 Otherwise, it sits in an infinite loop, waiting for messages to
process
 on its input queue
*/
int main()
{
 pid_t pid, sessionID;
 int i;
 int running = 1;
 struct my_msg_st some_data;
 long int msg_to_receive = 0;
 struct msqid_ds buf;

 (void) signal(SIGTERM, terminate);

pid = fork();
 switch(pid)
 {
 case -1:
 fprintf(stderr, "fork failed");
 exit(EXIT_FAILURE);
 case 0:
/* This is the child...so it continues on */

/* Now the child becomes the process group leader
 In general, setsid only fails if the child (i.e. the calling
process)
 is already a process group leader. */

sessionID = setsid();
 if (sessionID == -1) {
 fprintf(stderr, "setsid failed");
 exit(EXIT_FAILURE);
 }

Page 53 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

/* First, set up the input message queue. */

 in_msgid = msgget((key_t)1234, 0666 | IPC_CREAT | IPC_EXCL);

 if (in_msgid == -1) {
 fprintf(stderr, "msgget failed err: %s for input
queue\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
 if (msgctl(in_msgid, IPC_STAT, &buf) != -1)
 printf("Input Queue Permissions are: %o\n", buf.msg_perm.mode);

/* Second, set up the output message queue. */

 out_msgid = msgget((key_t)1235, 0666 | IPC_CREAT | IPC_EXCL);

 if (out_msgid == -1) {
 fprintf(stderr, "msgget failed err: %s for output
queue\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
 if (msgctl(out_msgid, IPC_STAT, &buf) != -1)
 printf("Output Queue Permissions are: %o\n",
buf.msg_perm.mode);

/* Then the messages are retrieved from the input queue, converted,
and sent
 to the output queue, until an end message is encountered. */
 while(running) {
 if (msgrcv(in_msgid, (void *)&some_data, BUFSIZ,
 msg_to_receive, 0) == -1) {
 if (errno != EINTR) {
 fprintf(stderr, "msgrcv failed with error: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else
 continue;
 }
/* printf("You wrote: %s", some_data.some_text); */

 i=0;
 while(some_data.some_text[i])
 some_data.some_text[i++] =
toupper(some_data.some_text[i]);

 if (msgsnd(out_msgid, (void *)&some_data, MAX_TEXT, 0) ==
-1) {
 fprintf(stderr, "msgsnd failed with error: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 }
 exit(EXIT_SUCCESS);

 default:
/* We're the parent...so just exit*/
exit(0);
 }
 }

Page 54 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

Example–Interix Service

In the previous code listing, "Example–Interix Daemon Code," the msgd daemon was ported to Interix.
For this daemon to start at system startup, the daemon must be converted into a service. The changes
described and listed in this section are required to convert and install the daemon as a service.

Some of the normal UNIX rules for coding daemons cause problems with the service interface, especially
forking, having the parent exit, and then calling setsid() to create a new session. Recall that if the parent
process has called exit(), then psxrun.exe treats the program as having exited and the Windows Service
Control Manager reports that the service never started successfully. This is what the ported msgd code
presently does.

To fix this problem, modify the code as follows. Notice that calls to fork(), setsid(), and the associated
logic have been removed from the wmsgd.c code.

$ cat wmsgd.c

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX_TEXT 512

 int in_msgid, out_msgid;

/* This function reacts to the signal which is passed in the
parameter sig.
 This function is called when a signal occurs.
 This signal is "normally" received during a system shutdown,
 and this is where cleanup is performed.
 In this case the Input and Output message queues are deleted.
*/
void terminate(int sig)
{
/* Close the input message queue */
 if (msgctl(in_msgid, IPC_RMID, 0) == -1)
 fprintf(stderr, "msgctl failed (input queue) error: %s\n",
strerror(errno));

/* Close the output message queue */
 if (msgctl(out_msgid, IPC_RMID, 0) == -1)
 fprintf(stderr, "msgctl failed (output queue) error: %s\n",
strerror(errno));

 exit(0);
}

struct my_msg_st {
 long int my_msg_type;
 char some_text[BUFSIZ];
};

Page 55 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

/* The main daemon function must intercept the SIGTERM signal
generated
 for example when the system shuts down.
 Otherwise, it sits in an infinite loop, waiting for messages to
process
 on its input queue
*/
int main()
{
 int i;
 int running = 1;

 struct my_msg_st some_data;
 long int msg_to_receive = 0;
 struct msqid_ds buf;

 (void) signal(SIGTERM, terminate);

/* First, set up the input message queue. */

 in_msgid = msgget((key_t)1234, 0666 | IPC_CREAT | IPC_EXCL);

 if (in_msgid == -1) {
 fprintf(stderr, "msgget failed err: %s for input queue\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 if (msgctl(in_msgid, IPC_STAT, &buf) != -1)
 printf("Input Queue Permissions are: %o\n", buf.msg_perm.mode);

/* Second, set up the output message queue. */

 out_msgid = msgget((key_t)1235, 0666 | IPC_CREAT | IPC_EXCL);

 if (out_msgid == -1) {
 fprintf(stderr, "msgget failed err: %s for output queue\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 if (msgctl(out_msgid, IPC_STAT, &buf) != -1)
 printf("Output Queue Permissions are: %o\n", buf.msg_perm.mode);

/* Then the messages are retrieved from the input queue, converted,
and sent
 to the output queue, until an end message is encountered. */
 while(running) {

 if (msgrcv(in_msgid, (void *)&some_data, BUFSIZ, msg_to_receive, 0)
== -1) {
 if (errno != EINTR) {
 fprintf(stderr, "msgrcv failed with error: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }
 else
 continue;
 }

 i=0;
 while(some_data.some_text[i]) some_data.some_text[i++] =

Page 56 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

toupper(some_data.some_text[i]);

 if (msgsnd(out_msgid, (void *)&some_data, MAX_TEXT, 0) == -1) {
 fprintf(stderr, "msgsnd failed with error: %s\n",
strerror(errno));
 exit(EXIT_FAILURE);
 }

 }
 exit(EXIT_SUCCESS);

}

Notice that calls to fork(), setsid(), and the associated logic have been removed from the wmsgd.c code.

To compile and execute the above code

1. To re-compile and re-link the Windows (daemon) service, use the gcc command:

$ gcc -o wmsgd wmsgd.c
$./wmsgd &

2. To launch the test application msg2 to interact with the Windows service, enter the following
command:

$./msg2

Note that the output displayed is the same as in "Example–Interix Daemon Code."

3. To terminate the Windows (daemon) service process, use the following command:

kill PIDofWmsgd

(The PID of Wmsgd is found under the PID heading in a ps listing.)

Interix daemons can be installed and executed in two different ways. They must be installed and executed
as Windows services if they have to run logged on with a Windows account, such as to access network
resources. Otherwise, they can be run as conventional daemons by using the same mechanism as
conventional UNIX systems, that is, by creating shell scripts in the /etc/rc2.d/ directory that directly start
and stop the daemons. Then the init utility can start the daemon when the Interix subsystem initializes.

Because the wmsgd daemon does not need to run logged on to a Windows account, it can be installed by
creating a shell script in the /etc/rc2.d directory. The following script can be used for the wmsgd daemon:

#!/bin/sh
#
/etc/init.d/wmsgd
#
WMSGD=/usr/sbin/wmsgd
PATH=/bin:/usr/contrib/bin
. /etc/init.d/funcs
case $1 in
 start)
 ${WMSGD}
 [$? = 0] && echo "wmsgd started"

Page 57 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

 ;;
 stop)
 killall ${WMSGD}
 [$? = 0] && echo "wmsgd stopped"
 ;;
 *)
 echo "usage: $0 start|stop"
 ;;
 esac
exit 0

This script should be created and stored in the /etc/init.d directory with a file name of wmsgd, and
symbolic links created in /etc/rc2.d as follows:

K80wmsgd -> ../init.d/wmsgd
S80wmsgd -> ../init.d/wmsgd

Send feedback to Microsoft

© Microsoft Corporation. All rights reserved.

Page 58 of 58Chapter 10: Interix Code Conversion

6/24/2024ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WIN32COM.v10.en/dnucmg/html/...

