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1 Introduction 

1.1 Motivation for this work 
Since it becomes more and more common in the car industry with networks of different 
control units made by different distributors in the cars, standards for interfaces and protocols 
become more and more important. One industry standard, which grows mostly in the 
European vehicle industry, is OSEK/VDX. 
 Haldex Traction is a distributor of a limited slip coupling. This product contains an 
electrical control unit that reads information from a data bus in the car it is installed in and 
therefore the car manufacturers may enforce Haldex Traction to join OSEK/VDX in the 
future.  

Haldex Traction’s intensions with this master thesis was to deepen their knowledge about 
OSEK/VDX, find the best suited realtime operating system with support for OSEK/VDX and 
to be better prepared if Haldex Traction later on wants to change their present realtime 
operating system to one that supports the OSEK/VDX standard. 
 
 
 

1.2 Haldex AB 
Haldex [15] is an innovator in the vehicle business area. They provide proprietary systems 
and components for cars, trucks and industrial vehicles on the world market. The Haldex 
Group consists of four different companies in four product areas. The companies are: 
 

• Haldex Brake Systems: Produces subsystems and components for air brake and 
suspension systems for commercial vehicles. Some examples of products are ABS 
systems, automatic and manual brake adjusters and disc brakes. 

• Haldex Hydraulic Systems: This division mainly produces hydraulic systems for 
steer and lift systems for forklifts, construction equipment, and trucks et cetera.  

• Haldex Garphyttan Wire: Produces steel-alloyed spring wire products for 
applications with precise performance demands.  

• Haldex Traction: Produces an All Wheel Drive (AWD) system for 
passenger cars. 

 
The group has 4 100 employees and production in North America, South America, 

Europe, India and China. 
 
 

1.2.1 Haldex Traction 
Haldex Traction [16] was founded in 1998. Its headquarter is placed in Landskrona and it has 
one support office in Detroit, USA. Haldex Traction has 200 employees. The customers are 
the VW-group, Ford and General Motors. Currently Volkswagen, Audi, Skoda, Seat, Volvo 
and Bugatti use the AWD-system. 
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The coupling 
Haldex Limited Slip Coupling  (LSC) is installed in the car to distribute the torque between 
the front and the rear axis (Figure 1-1). It can be installed both in front driven and rear driven 
vehicles. The coupling is based on a Swedish patent acquired by the Haldex Group. 

4000050p  
Figure 1-1 Haldex LSC in a front driven car. 
 
 
Basic function of the coupling 
Haldex LSC comprises three different functional parts: 
 

• A hydraulic pump driven by the slip between the front and rear axis. 
• A wet multi-plate clutch. 
• A computer-controlled throttle valve. 

 
A bit simplified, the unit is a hydraulic pump in which the housing and the annular piston are 
connected to one shaft and the piston actuator is connected to the other. When a speed 
difference occurs between the two shafts (the rear and the front axes) the pumping starts 
immediately and generates an oil flow (Figure 1-2). This oil flow compresses the wet multi 
plate clutch causing the speed difference between the axes to decrease. The oil returns to a 
reservoir via a controllable valve. The oil pressure, that decides the torque distribution 
between the axes, can be adjusted with the help of the controllable valve. 
 

 
Figure 1-2 Simplified picture of Haldex LSC 
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Electronic control unit 
To control the valve the electrical control unit (ECU) Infineon C167cs is used. It’s a 16-bit 
RISC controller with 20 MHZ CPU clock and 256 kB flash memory.  
Through the valve the software is able to control the torque transfer characteristics. 

The software consists of two parts with different purposes, the base software and the 
application software.  

The goal of the base software is to control the internal functions of the coupling, for 
example to compensate for differences in the viscosity of the oil caused by variations in the 
operating temperature. Another example of a task for the base software is to control a small 
electric pump that provides the coupling with a low oil pressure to ensure minimum activation 
time. 

The application software’s function is to make the coupling behave in a desired way in 
every different driving situation. In a roundabout one specific behaviour is desired and when 
parking another. The state of the car, or the driving situation, is determined with the help of 
information from other active systems in the car via a data bus. 
 
 
Software architectural design 
Haldex Traction’s software system is decomposed into four different main subsystems: 
Diagnostics application, Control application, Strategic control and Base software. 
 
 

ECU Hardware 

Base software  
(Hardware Adaption Layer) 

Diagnostics application Control application 

Strategic 
Control 

Hardware dependent 
drivers, protocol 
managers, RTOS 

data flow 

 
Figure 1-3 Haldex Traction’s software architecture 
 
• Base software: It contains all hardware dependant drivers. It also contains 

hardware adaptation and protocol managers.  
• Strategic Control: This is the supervisory part of the system. It monitors the other 

parts of the software and reacts on errors. If a serious error is detected, the strategic control 
is able to stop other parts of the software from executing and puts the coupling in a safe 
state. 

• Control application:  It contains the control laws that controls the stiffness of the 
coupling, and therefore also the vehicle dynamics. 
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• Diagnostics application: It contains the code that communicates with tester equipment, 
and executes commands from such equipment. If the diagnostics application wishes to 
control the coupling, it makes a request to the strategic control, which decides if this is 
allowed. The diagnostics application also collects error information and stores errors to the 
error log.  

 
All the subsystems in Haldex Traction’s application use the realtime operating system Rubus 
OS. 
 
 

1.3 Outline of the report 
The OSEK/VDX standard is described in chapter 2. This includes a summary of the standard 
documents OSEK/VDX Operating System, OSEK/VDX Time-Triggered, OSEK/VDX 
Communication, OSEK/VDX Network Management and OSEK/VDX Implementation 
Language. In chapter 3 there are eight different OSEK/VDX realtime operating systems 
presented. The operating systems are also ranked according to the qualities of an OSEK/VDX 
realtime operating system that are most important for Haldex Traction. The main differences 
between an OSEK/VDX realtime operating system and Rubus OS are described in chapter 4. 
Chapter 5 provides a design suggestion for how to convert Haldex Traction’s application if 
changing realtime operating system from Rubus OS to an OSEK OS.  In chapter 6 is the 
operating system of a test application changed from Rubus OS to an OSEK OS.  
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2 OSEK/VDX 
OSEK [1] is the abbreviation for the German term "Offene Systeme und deren Schnittstellen 
für die Elektronik im Kraftfahrzeug" (Eng: "Open Systems and the Corresponding Interfaces 
for Automotive Electronics"). It was founded in 1993 as a joint project of the German 
automotive industry aiming for an industry standard for distributed control units in vehicles. 
In 1994 some French automotive companies joined OSEK and introduced their VDX-
approach (Vehicle Distributed eXecutive) which is a similar project started by French 
automotive companies. As a result OSEK/VDX was introduced. 
 The initial OSEK/VDX partners are Adam Opel AG, BMW AG, DaimlerChrysler AG, 
IIIT-University of Karlsruhe, GIE.RE. PSA, Renault, Robert Bosch GmbH, Siemens AG and 
Volkswagen AG. Presently there are 65 companies in the OSEK/VDX technical committee. 
Among these companies are both vehicle producers like FIAT, Ford, GM Europe and Porsche 
and producers of realtime operating systems and tools, like Accelerated Technology, ETAS, 
Greenhills and Metrowerks. 
 
 
 

2.1 Goal with OSEK/VDX 
The motivation for introducing the OSEK/VDX project is high recurring expenses in the 
development of non-application related aspects of control unit software and the 
incompatibility of control units made by different distributors caused by the use of different 
interfaces and protocols. 
 The goal is to increase portability and reusability of the application software. This is 
achieved by specifying interfaces that are abstract and as application independent as possible 
in the areas of real-time operating system, communication and network management. The 
user interfaces should also be independent of hardware and network. 
 
 
 

2.2 OSEK/VDX Operating System 
OSEK/VDX Operating System [2] describes a standard for real time operating systems, which 
support efficient utilisation of resources for automotive control unit application software. The 
operating system described is a single processor operating system meant for distributed 
embedded control units.  

The interface between the operating system and the application software is standardised 
using a set of system services. The system services are identical for all implementations of the 
OSEK/VDX operating system.  
 ISO/ANSI-C syntax was used when defining the system services. 
 
 

2.2.1 Architecture of the OSEK/VDX operating system 
There are a few different processing levels defined for an OSEK operating system. In 
increasing priority order the processing levels are task level, level for operating system 
internal activities and interrupt level. The task level with the lowest priority is where the 
application software is executed. The second highest priority level is assigned to the operating 
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systems internal activities. The interrupt level is assigned the highest priority and this is where 
the interrupt service routines are executed. 
 
 
Task management 
When developing complex control applications it is often a good idea to split up the 
application into smaller tasks according to their real-time requirements. The operating system 
controls which task should be running via the scheduler and it supports parallel and 
asynchronous execution of tasks. 
 
 
Extended tasks 
An extended task can be in one of the following four different states: running, ready, waiting 
and suspended.  

Only one task can be in the running state at a given time. The CPU is assigned to the task 
in the running state.   

All tasks that are ready to execute are in the ready state. In a context switch the scheduler 
decides which task to execute next. 

When a task is waiting for an event to occur it is in the waiting state. 
When a task is passive and don’t want to execute it is in the suspended state. A task in 

the suspended state can be activated and moved to the ready state. 
 
 
Basic tasks 
The state model for basic tasks is exactly the same as the state model for extended tasks 
except that it does not have a waiting state. The advantage of basic tasks compared to 
extended tasks is that they require less system resources (RAM). A short description of the 
different states follows: 

 Only one task can be in the running state at a given time. The CPU is assigned to the 
task in the running state.   

All tasks that are ready to execute are in the ready state. In a context switch the scheduler 
decides which task to execute next. 

When a task is passive and do not want to execute it is in the suspended state. A task in 
the suspended state can be activated and moved to the ready state. 
 
 
Conformance classes 
To overcome the problem that different application software have various requirement on the 
system and to be able to use the OSEK operating system on a wide range of hardware the 
conformance classes were introduced. There are four different conformance classes and they 
are upward compatible. 
 The conformance classes defined are: 
 

• BCC1 only supports basic tasks and are limited to one request per task (meaning that 
the operating system cannot handle activations of a basic task already activated). It is 
also limited to one task per priority. 

• BCC2 is like BCC1 but supports multiple requesting of task activation, which means 
that if a task that is already activated receives one or more activation requests these 
request are queued. The activation requests are queued per priority in activation order. 
BCC2 does also support more than one task per priority. 
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• ECC1 is like BCC1 but with support for extended tasks. 
• ECC2 is like BCC2 but with support for extended tasks and multiple requesting of 

task activation are not allowed. 
 
 

2.2.2 Scheduling 
All tasks are assigned a priority. Zero is the lowest priority and larger numbers define higher 
priorities. Priorities are defined statically and cannot be changed at runtime. At a context 
switch the task with the highest priority gets to execute. Tasks of identical priority are 
activated in FIFO (First In First Out) order. OSEK/VDX supports the following scheduling 
policies: non preemptive scheduling, full preemptive scheduling, groups of tasks, mixed 
preemptive scheduling. 
 
 
Non preemptive scheduling  
When using a non preemptive scheduling policy task switching is only allowed at given 
points in the code. The points of rescheduling are the following: 
 

• When a task terminates successfully. 
• When a task terminates successfully and explicitly activates a successor task. 
• When an explicit call of the scheduler is made. 
• When a transition into the waiting state takes place. 

 
 When using non preemptive scheduling it is possible that a high priority task has to wait 
for a task with lower priority to finish its execution before the high priority task can start. 
 
 
Full preemptive scheduling 
When using full preemptive scheduling the currently running task may be preempted at any 
instruction by a task with a higher priority. This means that the latency period is independent 
of the run time of lower priority tasks. When the system is fully preemptive one must always 
expect to be pre-empted by another task. It is possible to block the scheduler if a critical 
region must not be preempted.  
 
 
Groups of tasks 
By defining groups of tasks it is possible to allow tasks to combine the aspects of preemtive 
and non preemptive scheduling. Tasks within a group behave a bit different. For a task that 
has the same or lower priority as the task with the highest priority within the group, the tasks 
within the group acts like non preemptive tasks. For a task that has higher priority than the 
task with the highest priority within the group, the tasks within the group acts like preemptive 
tasks. 
 
 
Mixed preemptive scheduling 
The mixed preemptive scheduling was introduced to gain the benefits of both preemptive and 
non preemptive scheduling. In a system with a few parallel threads with long execution times 
preemptive scheduling is to prefer while in a system with many very short tasks a non 
preemptive scheduling policy is preferable.  
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 The reason not to use preemptive scheduling is when a task switch consumes the same 
amount of time as the execution of the task or when one have limited amount of RAM or 
finally if a task must not be pre-empted. 
 When using the mixed preemptive scheduling the scheduling policy depends on the 
scheduling policy of the running task. If the running task is preemptable then preemptive 
scheduling is used and if the running task is non preemptable then non preemptable 
scheduling is used. 
 
 

2.2.3 Application modes 
Application modes are designed because many micro control units (MCUs) may run several 
completely independent applications, for example normal operation or factory test. The 
application mode has to be decided at start up. It is not allowed to change application mode at 
runtime. 
 Normally the different application modes have their own set of tasks, ISR's etc. but if the 
same functionality is needed again, in a different application mode, it is allowed and 
recommended to share between the modes. 
 At start up it is up to the user code, using no system services, to determine which 
application mode that should be started and pass it as a parameter to the API-service StartOS. 
It should be fast and easy to discover which system mode to start to avoid a long and 
complicated start up procedure.  
 
 

2.2.4 Interrupt processing 
OSEK/VDX describes two categories of interrupts, ISR category 1 and ISR category 2. The 
difference between category 1 and 2 is that it’s not possible to use operating system services 
within an interrupt service routine of category 1 and after the ISR has finished, the execution 
continues at the exact instruction where the interrupt has occurred. ISR's of category 2 are 
allowed to use some operating system services, for instance the Activate Task service routine 
and after termination of the ISR of category 2 a rescheduling will take place.  
 Inside the ISR no rescheduling takes place. The scheduling of the ISR's is hardware 
dependent and therefore it is not specified in OSEK/VDX. The number of interrupt priorities 
also depends on the hardware and on the implementation.  
 It is always possible to disable interrupts, both within an interrupt service routine and in 
an ordinary task. 
 
 

2.2.5 Event mechanism 
An event is always owned by an extended task. An extended task can be the owner of several 
events. The events are used for synchronization, message passing and so on.  
 All tasks, both basic and extended, can set any event but only the owner of the event can 
wait for and clear the event.  

When an extended task is waiting for an event it is placed in the waiting state. When the 
event occurs it is moved to the ready state and the operating system reschedules. If a task is 
waiting for several events it is moved to the ready state when the first event occurs. If an 
extended task tries to wait for an event that has already occurred, the task remains in the 
running state. 
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2.2.6 Resource management 
Resource management is used to control concurrent access to a resource when several tasks 
with different priorities try to gain access to it. The resource management is useful under the 
following circumstances:  
 

• Using preemptable tasks. 
• If tasks and interrupt service routines share resources. 
• If interrupt service routines share resources. 

 
The resources could for instance be memory, hardware areas or the scheduler. The 

resource management handles the following problems: 
 
• Two tasks cannot occupy the same resource at the same time (mutual exclusion). 
• It prevents priority inversion, see section 2.2.6.1.1. 
• It prevents dead locks, see section 2.2.6.1.2. 
• An attempt to access a resource never results in a waiting state because of the OSEK 

Priority Ceiling Protocol, described in chapter 2.2.6.2 OSEK Priority Ceiling Protocol. 
• Two tasks or interrupt service routines cannot occupy the same resource at the same 

time (this is true if the resource management is extended to include interrupts.) 
 
 
Problems with synchronisation mechanisms 
Priority inversion 
Priority inversion is a typical problem with synchronization mechanisms. It means that a 
lower-priority task delays the execution of a higher-priority task despite that they do not share 
any common resources.  
 The solution to this problem in OSEK is the OSEK Priority Ceiling Protocol.  
Figure 2-1 shows the problem of priority inversion. Task T1 has the highest priority and task 
T3 the lowest. Task T3 occupies semaphore S1 and is then pre-empted by T1. Task T1 tries to 
access the semaphore S1 but is denied because it is already occupied by T3. Because of S1 is 
occupied T1 enters the waiting state. Now T2 is put in the running state. After T2 is finished 
T3 gets to run again and releases the semaphore S1. Now after the low priority threads are 
finished the high priority thread T1 is put in the running state again. The low priority threads 
delayed T1. Also the thread T2 that did not use the semaphore. 

 
Figure 2-1 Priority inversion 
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Deadlocks 
Deadlock is another problem of synchronisation mechanisms. Deadlock means that task 
execution is impossible because of infinite waiting for mutually locked resources. 
 Figure 2-2 shows the problem of deadlocks. Task T1 has the highest priority. When the 
task T1 is running it accesses the semaphore S1 and then stops, waiting for an event to occur. 
The task T2 is transferred to the running state and occupies the semaphore S2. An event 
happened and T1 is put in the running state. T1 tries to access the semaphore S2 but is denied 
because it’s already occupied by the task T2. Now T2 is back in the running state and tries to 
access the semaphore S1 but is denied because the semaphore is already occupied by the task 
T1. This is a deadlock. 
 

 
Figure 2-2 Deadlock 
 
 
OSEK Priority Ceiling Protocol 
The OSEK priority ceiling protocol exists to avoid priority inversion and deadlocks. It works 
as follows: 
All resources are assigned a ceiling priority. The ceiling priority is equal to or higher than the 
priorities of all tasks that have access to the resource or any of the resources linked to this 
resource. The ceiling priority must be lower than the lowest priority of all the tasks that do not 
have access to the resource and which have priorities higher than the task with the highest 
priority of all the tasks that access the resource. 

When a task tries to access a resource its priority is raised to the ceiling priority of that 
resource. When a task releases a resource the priority of that task is lowered to its normal 
priority. 

The OSEK priority ceiling protocol with extensions for interrupt levels works exactly as 
described above but the ceiling priorities are set with regard to both the tasks and the interrupt 
service routines that have access to the resources. 
 
 

 2.2.7 Alarms 
OSEK/VDX supports the handling of recurring events by alarms and counters. An alarm can 
either be activated at regular time intervals or for example by encoders at certain positions of 
an axis. An alarm can be either a single alarm or a cyclic alarm. Counters and alarms are 
defined statically. 
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 An alarm must be connected to one counter and one task or one alarm-callback routine. 
The alarm will be activated when the counter it is related to reaches a predefined value. When 
the alarm is activated it can do one of the following three things depending on the 
configuration: 
 

• Activate the alarm-callback routine (a short function that runs with category 2 
interrupts disabled). 

• Activate the task. 
• Set an event for the task. 

 
 

2.2.8 Error handling, tracing and debugging 
To simplify error handling, tracing and debugging OSEK/VDX provides different hook 
routines. The hook routines allow user defined actions within the OS internal processing. 

Features of hook routines: 
 
• Hook routines are called by the operating system. 
• They have higher priorities than all tasks. 
• They cannot be interrupted by category 2 interrupt service routines. 
• The hook routines are part of the operating system. 
• They are implemented by the user and have user-defined functionality. 
• Their use of API functions is restricted. 

 
The following five hook routines exist in an OSEK/VDX OS: 
 
• ErrorHook 
• PreTaskHook 
• PostTaskHook 
• StartupHook 
• ShutdownHook 

 
The ErrorHook is activated if a system service returns a StatusType value that is not 

equal to E_OK. In the Error Hook the user is able to access some additional information to 
support a more effective error management. 
 The PreTaskHook and the PostTaskHook may be used for debugging or time 
measurement purposes. The PreTaskHook is called every time directly after a new task enters 
the running state. The PostTaskHook is called every time directly before the old task leaves 
the running state. 
 The StartupHook is called every time at system start up. The purpose of the StartupHook 
is to perform user defined start up functions. After a reset the user is first able to execute 
hardware specific code and then make the StartOS call. After this call the operating system 
runs its initialisation code and then calls the StartupHook. In the StartupHook the user has the 
possibility to execute user-defined initialisation code. When the StartupHook is finished the 
operating system enables user interrupts and starts the scheduler. 
 When the operating system call ShutdownOS is called by the application or because of a 
fatal error the ShutdownHook is started. The user is able to define any system behaviour in 
the ShutdownHook. It is even allowed not to return from the routine.  
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2.3 OSEK/VDX Time-Triggered 
OSEK/VDX Time-Triggered (OSEKtime) [6] is another description of an OSEK/VDX 
realtime operating system with the main difference that it uses static scheduling. All important 
services, i.e. interrupt handling, dispatching, system time and clock synchronization, local 
message handling and error detection mechanisms are supported. If both static and dynamic 
scheduling is desired for the application it is possible to combine OSEK/VDX Time-
Triggered with OSEK/VDX OS. Then OSEK/VDX OS gets the CPU when OSEK/VDX 
Time-Triggered is in the idle mode. 
 
 

2.3.1 Task management 
OSEK/VDX Time-Triggered uses time-triggered tasks. A time-triggered task has three 
different task states: 
 

• Running: Only one task in the entire system can be in the running state at any point 
in time. The task in the running state is the task that is using the CPU at that point. 
Only the OSEKtime Dispatcher can set a task in the running state. 

• Preempted: A task is placed in the pre-empted state if another time-triggered task is 
activated before the first task has finished its execution. It leaves the pre-empted state 
and is placed in the running state again when the pre-empting tasks changes from the 
running state to the suspended state. 

• Suspended: All tasks in the suspended state are passive and can be activated by the 
Dispatcher. 

 
 The tasks are scheduled statically and the information on the task activation times is 
stored in the dispatcher table. The OSEKtime Dispatcher is responsible for starting the tasks 
at the right time. There is also functionality for monitoring the deadlines. This is also handled 
by the dispatcher but with the help of the Deadline Monitoring dispatcher table. If a task 
violates its deadline an error hook is started. 
 In OSEK/VDX Time-triggered there is a special task named ttIdleTask. This task is 
always the first task that is started by the OSEKtime dispatcher. That means that this task 
always gets the CPU if there are no other tasks activated. If one combines OSEK/VDX Time-
triggered with OSEK/VDX OS, OSEK/VDX gets the CPU instead of the ttIdleTask when no 
tasks or interrupt service routines in OSEKtime wants to execute. 
 
 

2.3.2 Interrupt processing 
Interrupt service routines are also supported by OSEK/VDX Time-triggered but with one 
restriction. When configuring the operating system for the application one has to provide the 
operating system with information on how often a particular interrupt service routine is 
allowed to execute. One has to define an interval in time where each interrupt may occur at 
most once. This makes it possible for the static scheduler to calculate worst case execution 
times even when interrupts are allowed. 
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2.3.3 Synchronisation 
OSEK/VDX Time-triggered has a synchronisation mechanism available to make it possible 
for several different electrical control units to synchronise their local time with a global time 
base. The synchronisation is done at start up and is adjusted to the global time every time after 
a dispatcher round. 
 
 

2.3.4 Inter-Task Communication 
OSEKtime also supports external message handling. The functionality that has to be 
supported by every OSEKtime implementation is described in the OSEKtime FTCom 
specification [21]. 
 
 

2.3.5 Error handling 
OSEKtime also supports error handling. The error handling in OSEKtime is the same as in 
OSEK/VDX OS. 
 
 
 

2.4 OSEK/VDX Communication 
OSEK/VDX Communication [3] describes a standard for the communication between tasks 
and interrupt service routines within and between ECUs. There are different conformance 
classes with different functionalities. The conformance classes CCCA and CCCB only 
support internal communication, i.e. between tasks and ISR’s within an ECU, while the 
conformance classes CCC0 and CCC1 also support external communication, i.e. between 
ECUs. Since Haldex Traction’s application only needs internal communication this will be the 
focus. 
 
 

2.4.1 Requirements 
The OSEK COM specification fulfils the following requirements: 
 

• General communication functionality. 
• Portability, reusability and interoperability of application software. 
• Scalability. 
• Support for Network Management (NM). 

 
 

2.4.2 Communication concept 
OSEK COM provides an API with services for the transfer of messages using send and 
receive operations. OSEK COM specifies the Interaction Layer (IL). 
 The internal communication is handled entirely by the interaction layer but the external 
communication has to use the Network Layer and the Data Link Layer. OSEK COM does not 
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specify the Network Layer or the Data Link Layer but it defines the minimum requirements to 
support all features of the Interaction Layer. 
 
 

2.4.3 Interaction Layer 
Overview 
The communication in OSEK COM is based on messages. Messages are sent in the form of 
message objects and the content of the messages is user defined. All messages and message 
properties have to be defined statically via the OSEK Implementation Language (OIL).  
 The IL describes an API to handle messages. It has functionalities for initialisation, data 
transfer and communication management.  
 Message identifiers are used to identify message objects. Messages are sent by sending 
message objects and received by receiving message objects. The OSEK COM supports m-to-n 
communication. This means that zero or more senders are able to send messages to the same 
sending message object and sending message objects are able to store messages in zero or 
more receiving message objects. One receiving message object receives messages from 
exactly one sending message object. 
 
 There are two types of receiving message object. They can be either queued or unqueued. 
The queued receiving message object has a FIFO (first in first out) queue to store incoming 
message. The size of the queue must be set to a value different from zero. If a queue is full all 
the messages it receives are lost. A message can only be read once in a receiving queue since 
the read operation removes the oldest message from the queue. If the queue is empty the IL 
does not provide any message data to the application. In the case of m-to-n communication 
each receiver has its own message queue and the messages from these queues are consumed 
independently. 
 The unqueued receiving message object only has place for one message object. A 
message can be read more than once. The read operation always returns the latest message. If 
no message has been received since the start of the IL the application receives a message 
value set at initialisation. 
 
 
Message reception 
Message data are copied from the message object to the application message when the API 
services ReceiveMessage or ReceiveDynamicMessage are called.  

It is possible to connect a reception filter to a message object. The message filter uses a 
predefined filtering algorithm to check if the message fulfils certain conditions. If it does not, 
the message is discarded. Different filtering algorithms can be defined for each message.  
 
 
Message transmission 
When sending an internal message the IL routes the message directly to the receiving part of 
the IL. A message can be stored in zero or more message objects when it’s transferred. The 
message is sent when the SendMessage or SendZeroMessage API service is called. When a 
zero-length message is sent no data transfer takes place. 
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Notification 
OSEK COM describes a notification mechanism to be able to determine the final status of a 
previously called send or receive operation. The notification is only performed if the message 
is properly received. This means that there is no notification if the filtering algorithm discards 
the message or if it is lost because of a full message queue.  
 There are four different notification classes but only the first class is supported for 
internal communication.  Notification Class 1 activates the configured notification mechanism 
directly after the message has been stored in the receiving message object. 
 The following four notification mechanisms exist: 
 

• Callback routine: The IL calls a user defined callback routine. 
• Flag: A flag is set that can be check by the application. 
• Task: The IL activates a user-defined task. 
• Event: The IL sets an event for a user-defined task. 

 
A given sender or receiver is limited to use only one of the notification mechanisms. 
 
 
Error handling 
OSEK COM also provides an error service. There are two different kinds of errors defined: 
 

• Application error: The requested API service was not executed correctly but the IL’s 
internal data are correct. The centralised error treatment is called and after that the 
decentralised error treatment is called with error status information. 

• Fatal errors: A fatal error means that the IL cannot assume correctness of its 
internal data. This leads to a call to the centralised system shut down. 

 
Two levels of error checking are provided by the OSEK COM: 
 
• Extended error checking: The extended error checking is used under the 

development of an application. It supports more accurate error checking but requires 
more execution time and more memory consumption. 

• Standard error checking: The standard error checking is less demanding and is 
used in a fully debugged system. 

 
 

2.4.4 Conformance classes 
To support different application requirements and specific system capabilities the 
communication specification supports four different Communication Conformance Classes 
(CCCs). The following communication conformance classes are defined: 
 

• CCCA: Defines the minimum requirements for supporting the OSEK/VDX 
Communication document. It only supports internal communication for unqueued 
messages. No message status information is supported. 

• CCCB: This CCC does also only support internal communication and all features of 
CCCA plus queued messages and message status information. 
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• CCC0: Defines the minimum requirements for supporting both internal and external 
communication. All features of CCCA are supported plus some minimum features to 
support external communication. 

• CCC1: Supports all features of OSEK/VDX COM. 
 
 
 

2.5 OSEK/VDX Network Management 
The purpose of the network management [4] is to make a standard for network management 
in a network of ECUs that all uses OSEK/VDX compliant realtime operating systems.  It 
becomes more and more common in the vehicle industry with networks of ECUs that 
communicate with each other, where all the nodes are made by different manufacturers. To 
ensure safety and functionality in such networks network management becomes important.  
 Network management in OSEK/VDX means the possibility for all nodes in the network 
to know the status of all other nodes and thereby detect failures or missing nodes in the 
network. The network shall also support network related diagnostic features. 
 The uses of these functions are up to the system responsible but to make this possible 
every node in the network have to support OSEK/VDX Network Management. 
 
 
 

2.6 OSEK/VDX Implementation Language 
OSEK/VDX implementation language (OIL) [5] describes a standard for the configuration of 
an application using OSEK/VDX. The goal is to make the software more portable between 
different OSEK/VDX realtime operating systems. The OIL-file may be hand-written or 
generated by an OIL configuration tool. Most OSEK/VDX realtime operating system 
suppliers have OIL configuration tools that read and generate OIL-files according to a user 
defined specification of the system. 
 
 

2.6.1 General concept 
An OSEK/VDX application is described with the help of a set of OIL objects. The CPU is a 
container for all these OIL objects. An OIL object consists of a predefined set of attributes 
and references. OIL defines all standard attributes for each OIL object. 
 A specific OSEK/VDX implementation may have additional attributes in the OIL objects 
but it is not allowed to change a standard attribute or to add a new OIL object. 

The following OIL objects shall be used to describe an OSEK/VDX application with 
OIL: 

 
• CPU: A container for all other objects. 
• OS: The OS object is used to define OSEK OS properties for 

the application. 
• APPMODE: Used to define different application modes. 
• ISR: This is where the interrupt service routines of the 

application are defined. 
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• RESOURCE: A resource is a code segment that can be occupied by a 
task. 

• TASK: A task that is scheduled by the realtime operating system. 
• COUNTER: A counter is used as hardware/software tick source for 

alarms. 
• EVENT: An event that can be sent to a task. 
• ALARM: An alarm is based on a counter. When it activates it can 

activate a task, set an event or activate an alarm-callback routine. 
• COM: This is where the standard attributes for the 

communication subsystem are set.  
• MESSAGE: The message attribute belongs to OSEK COM and defines 

the supplier-specific attributes to configure data exchange through messages between 
different tasks, interrupt service routines and CPUs. 

• NETWORKMESSAGE: The message attribute belongs to OSEK COM and defines 
the OEM-specific attributes to configure data exchange through messages between 
different tasks, interrupt service routines and CPUs. 

• IPDU: An IPDU is defined in OSEK COM. IPDU is used when 
transporting messages between different CPUs. 

• NM: This is where the standard attributes for the network 
management subsystem are set. 
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3 Some OSEK/VDX RTOS 

3.1 Why OSEK/VDX 
The technical benefits of OSEK/VDX are described under the heading Section 2.1. In this 
chapter the market related benefits of OSEK/VDX presented. 

Below a table of the leading global vehicle producers of 2002 is presented [20]. Many of 
the largest vehicle producers are either in the list of initial partners of OSEK/VDX (steering 
committee) or in the technical committee. Haldex Traction has three large customers, the 
VW-group, Ford and General Motors. They are all members of either the OSEK/VDX 
steering committee or the OSEK/VDX technical committee. 
 
Nr Vehicle producers Units 

2002 
OSEK/VDX 
partners 

Haldex Traction’s 
customers 

1 General Motors 8 504 434 Technical committee Customer 
2 Ford Motor Co. 6 819 594 Technical committee Customer 
3 Toyota Motor Corp. 6 167 703 - - 
4 Volkswagen AG 4 989 030 Steering committee Customer 
5 Daimler Chrysler AG 4 540 900 Steering committee - 
6 PSA/Peugeot-Citroen 

SA 
3 267 474 Steering committee - 

7 Hyundai Motor Co. 2 939 499 - - 
8 Honda Motor Co. 2 820 000 - - 
9 Nissan Motor Co. 2 735 530 - - 
10 Renault SA 2 403 975 Steering committee - 
11 Fiat S.p.A 2 079 336 Technical committee - 
12 Mitsubishi Motors Corp. 1 847 800 - - 
13 Suzuki Motor Corp. 1 707 392 - - 
14 BMW Group 1 057 344 Steering committee - 
15 Mazda Motor Corp. 964 800 - - 
Table 3-1 Leading global vehicle producers 
 
 
 

3.2 Important factors of OSEK OS for Haldex Traction 
Haldex Traction’s currently used realtime operating system is Rubus OS from the Swedish 
company Arcticus. Since the AWD control application works very well with Rubus OS the 
main reason to switch operating system is to follow the OSEK/VDX standard. Here follows a 
list of Haldex Traction’s most important requirements for the OSEK/VDX realtime operating 
systems and their suppliers: 
 

• They have to support the hardware ST10F272 from ST Micro Electronics, which 
Haldex Traction will be using. 

• The realtime operating system has to be certified for the OSEK/VDX OS standard. 
• The realtime operating system should be well tested and preferably used by some 

well-known companies. 
• A low price is of great importance. 
• The supplier shall be a large and well-established company. 
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• It is good if they have support in Sweden. 
• It is good if they support the compiler named Tasking. 

 
 
 

3.3 Eight OSEK/VDX RTOS 
An extensive market research based on information found on the web and a couple of reports 
[17][18][19] resulted in the following eight realtime operating systems for further 
investigations: 
 

• Eurosmot from Euros 
• Ercosek for Etas (Etas Group) 
• OSEKturbo from Metrowerks 
• RTA-OSEK from LiveDevices (Etas Group) 
• ProOSEK from 3Soft 
• Nucleus OSEK from Accelerated Technology 
• OX-OSEK from Trialog 
• osCAN from Vector Informatic  

 
 

3.3.1 Eurosmot 
The company Euros develops Eurosmot [7][20]. Euros has been in the OSEK/VDX business 
for a while. They do not support ST10F272 today but the will do in the future. 
 
OSEK/VDX certified Version 2.2.1 
Conformance classes BCC1, BCC2, ECC1, ECC2 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 
Number of offices in the company 1 
Number of employees ? 
When the company was founded ? 
Included in the price OS, OIL configurator 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden No 
Introduced on the market 1997 under the name OSEKplus 
Major companies that use the RTOS ContiTemic, Daimler Chrysler 
 
 

3.3.2 Ercosek 
This realtime operating system Ercosek [8][20] was developed by Etas but when LiveDevices 
joined the ETAS Group they decided to concentrate on LiveDevices OSEK/VDX OS 
implementation RTA-OSEK. 
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OSEK/VDX certified The system was replaced by RTA-OSEK 
Conformance classes - 
OIL support - 
Minimum resource usage - 
Compiler - 
Number of offices in the company - 
Number of employees - 
When the company was founded - 
Included in the price - 
Price for 10 developers - 
Price for the operating system - 
Support in Sweden - 
Introduced on the market - 
Major companies that use the RTOS - 
 
 

3.3.3 OSEKturbo 
OSEKturbo [9][20] is developed by Metrowerks. OSEKturbo does not support the 
conformance classes BCC2 and ECC2 that Haldex Traction needs, unless they do not want to 
change the current implementation.  
 
OSEK/VDX certified Version 2.2 
Conformance classes BCC1, ECC1 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 7.0 
Number of offices in the company 15 
Number of employees 550 
The company was founded in 1985 
Included in the price OS, configuration tool 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden No, onsite training Є 3 000 for two days + 

travel costs. 
Introduced on the market 1995 
Major companies that use the RTOS Siemens VDO, Daimler Chrysler 
 
 

3.3.4 RTA-OSEK 
RTA-OSEK [10][20] is developed by LiveDevices that is part of the Etas Group. The main 
features with this real time operating system are the development tools, Planner and Builder. 
 
OSEK/VDX certified Version 2.2 
Conformance classes BCC1, BCC2, ECC1, ECC2 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 7.5 
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Number of offices in the company 1 
Number of employees 35 
When the company was founded 1994 
Included in the price OS, Planner, Builder 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden No, they are willing to go here from UK if 

needed. 
Introduced on the market 1999 
Major companies that use the RTOS Tier1, Volvo OEMs 
 
 

3.3.5 ProOSEK 
ProOSEK [11][20] is developed by the German company 3Soft. For Swedish customers it is 
sold and supported by the Swedish company ENEA with an office in Malmö. 
 
OSEK/VDX certified Version 2.2 
Conformance classes BCC1, BCC2, ECC1, ECC2 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 8.0 
Number of offices in the company 2 
Number of employees 201 
When the company was founded 1988 
Included in the price OS, OIL configurator 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden Yes, ENEA has sale and support in Sweden 
Introduced on the market ? 
Major companies that use the RTOS BMW, Audi 
 
 

3.3.6 Nucleus OSEK 
Nucleus OSEK [12][20] is developed by the company Accelerated Technology. 
 
OSEK/VDX certified Version 2.2 
Conformance classes BCC1, BCC2, ECC1, ECC2 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 7.5 
Number of offices in the company 7 
Number of employees 3700 
When the company was founded 1990 
Included in the price OS, OIL configurator 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden One person in Sweden, offices in Finland and 
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UK. 
Introduced on the market 2001 
Major companies that use the RTOS ? 
 
 

3.3.7 OX-OSEK 
OX-OSEK [13][20] is developed by TRIALOG, but it is not certified for OSEK/VDX. It 
supports OSEK/VDX conformance classes BCC1 and ECC1 but since OSEK/VDX is a 
protected trademark of Siemens AG, TRIALOG is not allowed to claim that OX-OSEK 
supports OSEK/VDX because the OSEK/VDX committee has not certified it. 
 
OSEK/VDX certified No, support OSEK/VDX 
Conformance classes BCC1, ECC1 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 
Number of offices in the company 1 
Number of employees 30 
When the company was founded 1987 
Included in the price OS 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden No 
Introduced on the market 1998 
Major companies that use the RTOS Valeo 
 
 

3.3.8 osCAN 
Vector Informatic that is a part of Vector develops osCAN [14][20]. The product is interesting 
since it has a good price, support in Sweden, is developed by a large company with 15 years 
in the market and it supports all conformance classes and implementations that Haldex 
Traction needs.  
 
OSEK/VDX certified Version 2.2 
Conformance classes BCC1, BCC2, ECC1, ECC2 
OIL support Yes 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 
Number of offices in the company 6 
Number of employees 500 
When the company was founded 1988 
Included in the price OS, OIL configurator 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden Yes 
Introduced on the market 1998 
Major companies that use the RTOS GM, Ford, VW, Saab, Volvo Car 
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3.4 Evaluation of the OSEK/VDX candidates 
The conclusion after the evaluation of the different realtime operating systems is that Vector 
Informatics’ OSEK/VDX implementation osCAN is the operating system best suited for 
Haldex Traction. 
 The first RTOS that was excluded from the evaluation was Etas’ Ercosek. The reason 
was that when LiveDevices joined the ETAS Group, ETAS decided to concentrate on 
LiveDevices OSEK/VDX OS implementation RTA-OSEK, so Ercosek was replaced by RTA-
OSEK. 
 The most important factor in the evaluation is that the realtime operating system supports 
Haldex Traction’s new hardware, ST10F272 from ST Micro Electronics. This demand did not 
eliminate any of the alternatives since all the examined operating systems support the 
hardware ST10F272. 
 The second most important factor is that the implementation of the operating system is 
certified for some version of OSEK/VDX. OX-OSEK is not certified and was therefore 
excluded from the evaluation.  
 To be able to send messages between tasks in Haldex Traction’s application an 
implementation of OSEK/VDX that also supports the communication specification, OSEK 
COM, is needed. Among the remaining seven RTOS everyone except two do support OSEK 
COM. The implementations that are missing the OSEK COM are Euros’ Eurosmot and 
Metrowerks’ OSEKturbo. Left after the exclusion are RTA-OSEK, Nucleus OSEK, ProOSEK 
and osCAN. 
 RTA-OSEK developed by LiveDevices and Nucleus OSEK developed by Accelerated 
Technology are the newest realtime operating systems in the evaluation. RTA-OSEK has been 
on the market approximately five years under various names and it is also an expensive 
product. There are two main reasons why Nucleus OSEK is not suited for Haldex Traction. 
The major disadvantage is that Accelerated Technology cannot guarantee that their realtime 
operating system works together with Vector’s CAN-devices, which is a demand from Haldex 
Traction. The other disadvantage is the fact that Nucleus OSEK is the newest system in the 
evaluation.  
 Both of the two final systems seem to be good choices with regard to Haldex Traction’s 
demands. One advantage with 3Softs ProOSEK is that it supports OSEK/VDX Network 
Management but this was not considered necessary.  
 The system that was chosen was Vector’s osCAN. It supports the necessary hardware, is 
certified for OSEK OS, OIL and COM, it has been on the market since 1998 and is well 
tested. For Haldex Traction’s volume of production and number of developers osCAN is also 
the least expensive system of all realtime operating systems in the evaluation. Vector 
Informatics is a large company with about 500 employees and one support office in 
Gothenburg, Sweden. osCAN is also the operating system with shortest response time among 
the four systems RTA-OSEK, Nucleus OSEK, ProOSEK and osCAN. 
 

Table 3-2 is a simplified illustration of how the choice of an OSEK OS was made. 
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OSEK OS Hardware 

support 
OSEK/VDX 
certified 

OSEK COM Long time on 
the market 

Best price 

osCAN X X X X X 
ProOSEK X X X X - 
Nucleus OSEK X X X - - 
RTA-OSEK X X X - - 
OSEKturbo X X - - - 
Eurosmot X X - - - 
OX-OSEK X - - - - 
Ercosek - - - - - 
Table 3-2 Illustration of the elimination of OSEK OS. A (X) indicates that the OSEK OS 
fulfils the criteria. A (-) indicates that the OSEK OS is eliminated. 
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4 Rubus OS, Arcticus Systems 
Rubus OS [20][23] does not support OSEK/VDX but it is the realtime operating system that 
Haldex Traction is currently using. The Swedish company Arcticus Systems develops it.  
 
OSEK/VDX certified No 
Conformance classes - 
OIL support - 
Minimum resource usage See appendix A (confidential) 
Compiler Tasking 7.5 
Number of offices in the company 1 
When the company was founded 1985 
Included in the price OS 
Price for 10 developers See appendix A (confidential) 
Price for the operating system See appendix A (confidential) 
Support in Sweden Yes, office in Stockholm. 
Introduced on the market ? 
Big companies that uses the RTOS Haldex Traction, Volvo 
 
 
 

4.1 Rubus OS architecture 
Rubus OS is a realtime operating system designed for safety critical applications. The system 
is scalable why it could be used even in small micro controllers. The scheduling supports both 
statically and dynamically scheduled threads. 
 
 

4.1.1 The Basic Services 
The basic services in Rubus contains the services common for both Red and Blue threads. The 
services are basic clocks and timers, event log services and basic queue services. 
 
 
Clocks and Timers 
There are two types of clocks in Rubus OS, the basic clock and the blue clock. The basic 
clock is the system clock representing the real-time clock for the system. The resolution of the 
basic clock is the smallest resolution possible for the Red and Blue timers. The blue clock is 
based on the basic clock. At regular intervals the value of the basic clock is copied to the blue 
clock. The blue clock has a resolution that is equal to or less than the resolution of the basic 
clock. The benefits of having two clocks are simplified time handling in the Blue Kernel. 
 Rubus OS supports two types of timers, one shot and periodic. The initial time expiration 
can be defined either relative or absolute for both types of timers. The one shot timer is 
activated once while the periodic timer is activated time-periodically.  
  
 



 30

Event Log Services 
With this service it is possible to log Red and Blue run-time events with a time stamp added 
to each event. It is up to the user to specify which events to log. The log is a FIFO queue and 
can be used to analyse the execution behaviour with the Rubus Execution Analyser tool. 
 
 
Basic Queue Services 
This service makes it possible to store information in a FIFO queue. The queue may be used 
for communication between all different threads in the system.  
 
 

4.1.2 The Red Kernel Services 
The Red Kernel manages the execution of Red Threads. A Red Thread in Rubus OS is an 
object with the following characteristics. A Red Thread consists of program code. A Red 
Thread is part of a Red Schedule, which is statically allocated. A Red Thread executes 
according to a Red Schedule. The execution of a Red Thread cannot be blocked. 
 A Red Schedule consists of a number of Red Threads. A Red Schedule can represent an 
application or a Red Execution Mode in an application. The application modes can be 
switched at runtime. 
 
 
Red Schedule 
A Red Schedule consists of sets of Red Threads. Each set of Red Threads has its own release 
time. The threads in a set are executed in sequence. The running behaviour of a Red Thread is 
defined in the Red Schedule. The set of Threads that a Red Thread belongs to decides the 
release time of the thread, deadline for the thread is also defined in the Red Schedule and the 
memory area for the Red Schedule. The Red Schedule is executed periodically with the period 
specified by the user.  
 
 
Red Error Handling 
All Red OS calls returns the error status of the operation. If the Red Kernel detects an error 
the user defined function redError is called. 
 
 

4.1.3 The Blue Kernel Basic Layer Services 
The Blue Threads executes in the left over time when no Red Threads wants to execute. The 
Blue Kernel is responsible for run-time services for management of the Blue Threads, the 
execution of the Blue Threads, services for co-operation between threads and memory 
management.  
 A Blue thread consists of program code and it can be created and terminated. A Blue 
Thread executes according to the scheduling policy and the priority of the thread. A Blue 
Thread object is statically allocated. When executing a Blue Thread can be blocked waiting 
for a signal. 
 
 
Blue scheduling  
A Blue Thread is always in one of the following states: 
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• Dormant: The thread is not alive, not created or terminated. 
• Ready: The thread is ready to execute. 
• Blocked: The thread is blocked, waiting for a signal. 
• Running: The thread is executing. 

 
The Blue Scheduling is performed at runtime and the scheduling policy used is FIFO 

scheduling. Every priority have one FIFO queue. When a Blue Thread becomes ready it is 
placed in the last place in its priority queue. The first thread in the queue with the highest 
priority gets to execute when no other thread is in the running state. 
 
 
Blue Kernel Threads 
The Blue Kernel has two internal Blue Threads for its operation, the Blue Kernel Thread and 
the Blue Idle Thread. 
 The Blue Kernel Thread handles time supervision. It has the highest priority among the 
blue threads and executes at every Blue timer tick. 
 The other Blue Kernel Thread is the Blue Idle Thread. The Blue Idle Thread executes 
when no other threads want to execute and has the lowest priority.  
 
 
Blue Error Handling 
All the Blue OS calls returns the error status of the operation. If the Blue Kernel detects an 
error the user defined function redError is called. 
 
 
Signals 
Rubus OS also has support for signals. With the signal mechanism it is possible to pause a 
Blue Threads execution and wait for a selected set of signals. The first signal in the set that 
arrives activates the thread. The signals can also be used for synchronization. 
  
 
Interrupt Control 
The Blue Kernel Basic Layer also has services for interrupt control. These services make it 
possible for a Blue Thread to capture an interrupt and to protect critical sections of code. 
 
 

4.1.4 The Blue Kernel Thread Co-operation Layer Services 
Rubus OS is a scalable RTOS and the Blue Kernel Thread Co-operation Layer is optional. 
The layer contains functionality for the management of synchronization of resources and 
communication between Blue Threads. 
 
 
Mutex 
Mutexes are a synchronization mechanism between threads. A mutex in Rubus OS has the 
following characteristics: 
 

• A mutex is a type of binary semaphore. 
• The owner of a mutex is the Blue thread performing the lock operation. 
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• A mutex can be locked and unlocked but it is only the owner that can perform 
unlocking. 

• Mutexes in Rubus OS uses the priority inheritance protocol [22] to avoid priority 
inversion. 

• A mutex is statically allocated. 
 
 
Message Passing 
Message passing allows threads to communicate via message FIFO queues. A message queue 
handles messages of a fixed size. It has services for copying messages to and from the queue. 
A message queue has no owner that means different threads can open, close and copy 
messages to and from the queue. 
 
 

4.1.5 The Blue Personality Services 
The Blue Personality Services contains services for input output management. Services for the 
management of I/O devices, file operations and simple and standardised interface to I/O 
devices. 
  
 
 

4.2 Some differences between OSEK/VDX OS and Rubus OS 

4.2.1 Scheduling 
OSEK/VDX 
OSEK/VDX uses dynamic scheduling of tasks. All tasks are assigned a fixed priority at 
system generation where zero is the lowest and every number higher than zero describes a 
higher priority. 
 
Rubus 
Rubus OS have two types of threads. They have red threads and blue threads.  
The red threads are time periodic threads and use static scheduling. 
The blue threads are scheduled dynamically according to their priority. All red threads have 
the same priority, a priority that is higher than the priority of all blue threads. 
 
 

4.2.2 Periodic activities 
OSEK/VDX 
Time periodic activities are handled by the use of counters and alarms. A counter is set up. An 
alarm is connected to the counter and the activation interval has to be decided. Each time the 
alarm activates it can start a task, send an event to a task or start the alarm-callbackroutine. 
 
Rubus 
Time periodic threads are preferably defined as Red threads. All Red threads are time periodic 
and are scheduled statically. This makes the execution of critical time periodic threads fast 
and reliable. 
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4.2.3 Resource management 
OSEK/VDX 
OSEK/VDX uses the OSEK priority ceiling protocol to avoid priority inversion and 
deadlocks. All resources are configured off-line and all tasks that may want to use the 
resource have to be connected to the resource during configuration. All resources are 
statically assigned a ceiling priority at system generation. 
 When a task wants to acquire a resource it has to use the operating system call 
getResource and when it’s done with the resource it has to make the system call 
releaseResource to release it. 
 
Rubus 
Rubus uses the priority inheritance protocol to avoid priority inversion. For most systems the 
priority inheritance protocol has better overall performance than the priority ceiling protocol 
but the worst case performance is usually better with the priority ceiling protocol.  
 Rubus uses binary semaphores to encapsulate critical code sections. It is up to the 
developer to avoid deadlocks. 
 
 

4.2.4 Application modes 
OSEK/VDX 
OSEK/VDX supports the use of application modes. Different application modes may run 
completely independent applications. It is not allowed to change application mode at runtime.  
 
Rubus 
A number of Red threads are grouped into a Red schedule. Each Red schedule represents an 
application or an application mode. The application mode can be switched during runtime by 
an operating system call. 
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5 Conversion from Rubus OS to OSEK/VDX 
Due to the differences between Rubus OS and the OSEK/VDX specifications there is some 
work to be done when changing the application from using Rubus OS to an operating system 
that is implemented according to the OSEK/VDX specification.  
 Since Rubus OS and OSEK/VDX use different scheduling policies the scheduling has to 
be considered if an application shall be adapted from using Rubus OS to OSEK/VDX. One 
way to do this is to translate the schedule in Rubus OS to the use of timers and alarms in 
OSEK/VDX using the rate monotonic scheduling policy [22]. 
 Also the resource management has to be considered, as the resource management does 
not work the same way. The solution is straightforward. A segment in the code protected by 
semaphores will instead be set up as a resource in OSEK/VDX. 
 Rubus OS does have the advantage that it is possible to change application mode at 
runtime. There is no standard solution to this in OSEK/VDX. 
 All Rubus OS operating system calls that are used in Haldex Traction’s application have 
to be translated and mapped to OSEK/VDX operating system calls.  
 
 
 

5.1 Changes in the scheduling 
Rubus OS supports both static and dynamic scheduling while OSEK/VDX only supports 
dynamic scheduling. In the slip coupling application all threads, except for two low priority 
threads, are Rubus Red threads, which means that they are time periodic and scheduled 
statically.  
 Since there only exists one semaphore in the entire application and the part of the code 
that uses the semaphore is only called from threads with the same priority it means that there 
will be no changes in the priorities even though the OSEK Priority Ceiling Protocol is used. 
 This means that Haldex Traction’s present schedule in Rubus OS can be translated to 
OSEK/VDX using timers and alarms according to rate monotonic scheduling. With the help 
of alarms and timers in OSEK/VDX it is possible to obtain the same behaviour as with Rubus 
OS with the difference that the scheduling will take more time than before because of the 
change from dynamic to static scheduling. This extra time needed is very small compared to 
the execution time of the application and should not affect the behaviour. 
 In Rubus OS the Red (static) threads have the highest priority. In Haldex Traction’s 
application there are three groups of Red threads. One group that starts every second ms and 
have to be finished within two ms. The other two groups starts every fifth ms and have to be 
finished within five ms. 
 
 The schedule will be translated according to the following design plan: 
 

• The first group of Red threads that have the shortest period will be given the highest 
priority in the system and will be set to non-preemptive. All threads in this group will 
be converted to one thread to minimise the loss of time caused by task switching. A 
timer and a cyclic alarm will be connected to the thread to achieve the cyclic time 
period of two ms. 

• There are two groups of Red threads with a period of 5 ms and they will be given the 
second highest priority in the system. These groups have to be preemptive because 
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they will execute in the leftover time between the executions of the group with two ms 
period time. 

• Depending on the project there are three or more Blue (dynamic) Rubus threads in 
Haldex Traction’s application. These threads have the same priority, which means that 
they have the lowest priority in the system since all Blue threads have lower priority 
than Red threads. 
 The priority and scheduling of these threads will not change. All Blue threads will 
be given the same priority also in the new operating system. They will continue to be 
scheduled dynamically, preemptively and with the lowest priority in the system. 

 
 
 

5.2 Changes in the resource management 
When using binary semaphores to protect critical sections in the code the semaphore has to be 
locked when entering the critical section and unlocked when leaving the section. When the 
semaphore is locked, if another thread tries to lock the semaphore it has to wait until the 
thread that first locked the semaphore unlocks it. Because of this only one thread at a time can 
execute the critical section. 
 With an OSEK/VDX realtime operating system all critical code sections have to be set 
up before generating the system. At runtime when a thread wants to enter a critical section it 
has to make the operating system call getResource. If another thread also tries to enter the 
same critical section it will be blocked until the first thread makes the operating system call 
releaseResource. 
 The things that have to be done concerning resource management when changing the 
application from Rubus OS to OSEK/VDX are first of all to find all resources in the code that 
are protected by semaphores and define all the found resources as resources in the OIL-
configurator. The next thing to do is to change all the calls that lock a semaphore with calls to 
getResource and all the calls that unlock a semaphore with calls to releaseResource, with the 
correct resource as a parameter. 
 
 
 

5.3 Different application modes 
In Rubus OS there is a possibility to have different application modes. This opportunity is 
used in Haldex Tractions application. They have for example one init mode at start up, one 
operating mode for normal execution and one safety mode if things go wrong.  
 A certain Red Schedule defines an application mode in Rubus OS. Different application 
modes have different Red Schedules. A Red Schedule is a set of tasks that are scheduled 
statically. This means that different application modes may have different tasks and therefore 
completely different behaviour. Haldex uses different application modes but the differences 
between the modes are not very large. Except for in the init mode there are just one or two 
tasks that separate the different application modes.  
 In an OSEK operating system one has the possibility to run a start up hook as the first 
thing after the operating system has been started. This works like the init schedule Haldex 
uses after Rubus OS has started so there is no need to do anything but look which tasks are 
currently placed in the init schedule and place them in the start up hook. 
 As the differences between the application modes in Haldex Traction’s application are 
very small it is still possible to have them when using an OSEK/VDX operating system. 
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OSEK/VDX also supports different application modes but it is not possible to change mode 
during runtime, as is presently done with Rubus OS. This means that the application mode 
functionality has to be constructed. 

In Haldex Traction’s application, when changing to OSEK/VDX, there are at least two 
different ways to create different application modes. One way is to simply have a global 
variable that keeps track of the present application mode. Every time the application mode 
needs to be changed this is done by changing the value of the global application mode 
variable. The parts that differ in the different modes just have to check the application mode 
variable to know what to do.  

Another solution is to have a message box linked to all tasks. This will work in exactly 
the same way as the global variable does. If a task wants to change the mode it sends a 
message with the new mode to the common message box and before an application mode 
dependent task start its execution it has to check the message box.  

One advantage with the global variable is that this solution probably is faster. No 
operating system call is needed in this solution but an ordinary global variable has to be 
checked. On the other hand global variables are normally avoided so at this point of view the 
message box solution may be preferable. 

 
 
 

5.4 Translation of the operating system calls 
All Rubus OS operating system calls that are used in Haldex Traction’s application need to be 
mapped to OSEK/VDX. For some Rubus operating system calls there is a similar operating 
system call in OSEK/VDX. In this case the only thing that has to be done is a change to the 
name of the OS call in OSEK/VDX.  
 Many OS calls in Rubus do not have a matching OS call in OSEK/VDX. These OS calls 
are a bit more complicated to map. The OS calls in OSEK/VDX, C-functions and assembly 
commands have to be used to make the application behave in the same way it did when 
calling the original Rubus OS call. 
  
The following Rubus OS operating system calls are the ones that are used in Haldex 
Traction’s application. Below is a design suggestion of how to translate each one of these OS 
calls: 
 
blueFind: 
The threads are always reached by name. Therefore this function is not needed in an 
OSEK/VDX operating system. 
 
blueIntrSend: 
This Rubus OS call sends an event to a task. If the task that receives the event was waiting for 
an event it becomes ready to execute. The OSEK OS call SetEvent does the same thing. 
  
blueMutexFind: 
This is used to find a Mutex specified by name. In OSEK resources are used instead of Mutex 
and it is always possible to reach a resource directly by name. 
 
blueMutexInit: 
OSEK does not use Mutex, but resources are instantiated in the OIL-configurator. 
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blueMutexTimedLock: 
This OS call tries to lock a Mutex. If the Mutex is already locked it waits for the time interval 
specified by the in parameter timeout for another thread to unlock the Mutex. In OSEK/VDX 
resources are used instead of Mutexes. The OSEK OS call GetResource locks a resource but 
there is no possibility to set a timeout because of the OSEK Priority Ceiling Protocol 
(Immediate Inheritance Protocol) that OSEK OS uses. This protocol makes that a task never 
has to wait to lock a resource. 
 
blueMutexUnlock: 
The Mutex is unlocked and if other threads are waiting for the Mutex the scheduling policy is 
used to determine which thread shall acquire the Mutex. The same thing happens when using 
the OSEK OS call releaseResource. 
 
blueName: 
The threads are always reached by name and therefore this function is not needed in an 
OSEK/VDX operating system. 
 
bluePreemptionLock: 
This Rubus OS call makes that the calling thread cannot be pre-empted. 
It is possible to disable all interrupts in an OSEK OS with the call DisableInterrupt. Before 
this is done it is important to use the call GetInterruptDescriptor to be able to save the current 
state of interrupts. The result of disabling all the interrupts is that the executing task or 
interrupt service routine cannot be pre-empted. 
 
bluePreemptionUnlock: 
If all interrupts were disabled to achieve the Rubus OS call bluePreemptionLock then pre-
emption is enabled by enabling all the interrupts with the OSEK OS call EnableInterrupt. 
 
blueSigEmptySet: 
Clears the pending signals for a specific thread. A pending signal is a signal that has been sent 
but not yet received by another thread. Signals are used to send events. 
 In OSEK OS there is an OS call ClearEvent but the difference between Rubus OS and 
OSEK OS is that ClearEvent can only remove the pending events that the calling task owns.  
 
blueSigSend: 
This Rubus OS call sends a signal to a specific thread and if this thread was waiting for the 
signal, the thread is unblocked. The OSEK OS call SetEvent does the same thing. 
 
blueSigTimedWait: 
This function makes the blue thread wait the time timeout for the set of signals defined by set. 
It only waits if there is no signal pending at the time of the call. 
 There is an OSEK OS call WaitEvent that works the same way. The waiting thread is in 
the waiting state until at least one of the events specified has been set. The difference is that it 
is not possible to define a timeout in WaitEvent in OSEK OS. 
 
blueSleep: 
The blueSleep call causes the calling thread to be suspended for a specified amount of time. 
 There is no sleep function in OSEK OS. 
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blueStart: 
Since there are no red or blue threads in OSEK OS there is no need for a blueStart call. The 
OSEK OS call StartOS starts the entire realtime operating system. 
 
bsInit: 
This Rubus OS call is used to initialise the Basic Services. This call does not need to be 
replaced with anything because an OSEK OS does not initialise through an operating system 
call. 
  
bsLogPut: 
This function puts a log object in a log queue. There does not exist a corresponding call in 
OSEK OS. 
 
bsQueueGet: 
This Rubus OS call takes the oldest message from a queue. The same functionality exists in 
OSEK COM. It is possible to have m-to-n communication with the unread messages stored in 
a FIFO queue. The OSEK COM call to get a message from a message queue is 
ReceiveMessage. 
  
bsQueueInit: 
This Rubus OS call is used to initiate a queue in Rubus. It is a FIFO queue that all tasks and 
interrupt service routines are able to write to and read from. 
 In OSEK the OSEK COM has to be started with the call StartCOM. The message queue 
and which tasks and interrupt service routines that are allowed to write to and read from the 
queue has to be configured statically before system generation in the OIL-file. 
 
bsQueuePut: 
This call puts a message into the message queue. The corresponding call in OSEK COM is 
SendMessage. 
  
bsStatus: 
bsStatus is used to check if the running thread is a Rubus Red or a Rubus Blue thread and to 
check the preemption status. 

If it is important for the application’s functionality to know if the task running is a former 
Rubus Red or Rubus Blue thread it is possible to solve this with a global status variable. The 
first thing every task has to do is to read and save the old status in a local variable and set the 
global status variable to the status of the task. When a task has finished its execution it uses 
the local status variable to change the global status variable back. This has to be done to 
support pre-emption.  

The pre-emption status check can be solved in the same way. 
 
bsTvToJiffies: 
This OS call is used to calculate the number of timer ticks in a time interval. 
The OSEK OS call GetAlarmBase returns among other things the number of processor ticks 
needed to increase the system counter. If this is known and the frequency of the CPU is 
known then it is possible to calculate the number of timer ticks in a time interval. 
 
halBlueIntrContext: 
This Rubus OS function is used to enter an interrupt service routine. There is no 
corresponding OS call in an OSEK OS. A call to the desired function is possible to perform. 
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redGetAllThreads: 
This Rubus OS call returns the next Red thread that is going to execute. This is impossible in 
OSEK OS because OSEK OS uses dynamic scheduling. The dynamic scheduling means that 
which task is going to execute next is decided at runtime just before the new task starts.  
 
redInit: 
This is used to initiate the Red Kernel. This is not needed in OSEK/VDX. 
 
redMaxTimeGet: 
This Rubus OS call returns the longest execution time registered for the task. There is no 
similar call in OSEK but it should not be hard to implement it. Read the system clock in the 
pre task hook and store the value in a temporary variable. Read the system clock again in the 
post task hook, calculate the execution time and if it is longer than the earlier stored execution 
time value, store this value instead. The longest execution time is stored in the execution time 
variable. 
 
redSetSchedule: 
This function is used to choose the appropriate red schedule. In OSEK/VDX it is not possible 
to change execution state while running but it is possible to make an implementation that 
solves this problem according to the solution in Chapter 5.3. 
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6 Test application 

6.1 Introduction 
Haldex Traction’s application is mostly made up of Rubus Red threads. These threads are 
statically scheduled and time periodic. An important thing for Haldex Traction to ensure when 
changing realtime operating system from Rubus OS to an OSEK OS is that the time-periodic 
activities work as they do today. 

Time periodic activities in OSEK OS are solved with the help of alarms and timers. With 
a cyclic alarm connected to a timer it is possible to set a time-periodic event. With the event it 
is possible to activate a task.  
 Rubus OS uses static scheduling and this is not possible in OSEK OS. Haldex Traction’s 
application only contains one protected resource and this resource is only called from threads 
with the same priority so there will be no changes in priorities because of resources. If the 
tasks are given the correct priorities they will execute in the desired order. The only difference 
that will be noticed between Rubus OS and OSEK OS in Haldex Traction’s application is that 
the scheduling that is performed at runtime in OSEK will take a small amount of time, but this 
time is so small that it will not affect the functionality of the application. 
 
 
 

6.2 The test hardware and OSEK OS 
Haldex Traction is currently using the micro-control unit Infineon C167cs. For the next 
generation of the control unit, generation 3, they have changed the micro control unit from 
C167cs to ST10F272 from ST Micro Electronics. If Haldex Traction decides to change to an 
OSEK realtime operating system, this will not be introduced in an earlier generation than 
generation 3.  
 For the test application there were several advantages to test OSEK OS with Haldex 
Traction’s present micro-control unit Infineon C167cs. The first advantage is that most of the 
distributors of OSEK OS already have a configuration for this micro-control unit on the shelf. 
If the ST10F272 should be used, most of the OSEK distributors would have to do some 
configurations and tests to make it work and this both takes time and costs money.  
 Secondly, the staff at the TTE division at Haldex Traction are experts on the C167cs 
micro-control unit. 
 The last reason for using the C167cs for the test application is that Haldex Traction has 
more available debuggers for this processor. 
 
 The OSEK realtime operating system that was used in the test application is Vector 
Informatics OSEK implementation osCAN. This is presently the best suited OSEK realtime 
operating system for Haldex Traction. 
 
 
 

6.3 The test application 
The test application should be as simple as possible but still test the use of time-periodic 
activities in an OSEK OS. Haldex Traction’s limited slip coupling uses a small electrical 
pump controlled by the control software. This pump is used to obtain a base pressure of the 
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oil in the coupling. The good thing about the pump is that it is easy to control and it is 
possible to verify the functionality of the pump just by listening to the sound from it. 
 The test application consists of one time-periodic thread that first increases the duty cycle 
of the pump from zero to one thousand and then decreases the duty cycle form one thousand 
back to zero and then starts from the beginning. The duty cycle is changed in steps of one 
every second millisecond. The duty cycle determines the speed of the pump where zero is no 
pump activity and one thousand is maximum speed. 
 This small test application that makes calls to Haldex Traction’s code to steer the pump is 
a short and simple C-application. osCAN was configured to have one time periodic thread that 
starts every second millisecond in the OIL-configurator, which was included with the realtime 
operating system. The configurations needed in the OIL-configurator were very fast and 
simple. 
  
 A Red Rubus schedule consisting of one thread, the test thread, was configured to start 
every second millisecond to be able to test the test application with the old realtime operating 
system before changing to a new one. The application worked as expected and there were no 
problems. 
 
 The software architecture of the test application is illustrated in Figure 6-1 below. 
 
 

ECU Hardware 

Parts of base software  
(Hardware Adaption Layer) 

Test application 
Realtime operating 
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Hardware dependent 
drivers and protocol 
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data flow 

 
Figure 6-1 Software architecture of the test application 
 

• Test application:   The test application contains the test function that 
increases or decreases the duty cycle of the pump at each call. 

• Realtime operating system: The test application is tested both with Rubus OS and 
with the OSEK OS osCAN. In the test application the realtime operating system is 
used to perform the scheduling. 

• Parts of the base software: Parts of Haldex Traction’s base software is used to be 
able to control the pump. The necessary initialisation methods are used as well as the 
methods to steer the pump. 
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6.4 Two different approaches 
Haldex Traction already has a well working application that uses Rubus OS as its realtime 
operating system. When integrating this large already well-working application with a new 
realtime operating system there is another problem except for the functional differences 
between the two realtime operating systems. The memories in the processor, C167cs, are set 
up differently in Haldex Traction’s application compared with how it is set up in osCAN. The 
interrupt vector table is also generated in different ways in the two systems. Haldex Traction’s 
application and osCAN use completely different compiler and linker flags and the structure of 
Haldex Traction’s makefiles compared with osCAN’s makefiles are organized completely 
different. 
 
 There are two different approaches when integrating the two systems. One approach is to 
use Haldex Traction’s makefiles, do everything in the same way as they do today and just 
replace Rubus OS with osCAN. 
 The second approach is to use the makefiles included with the osCAN product, use the 
way Vector Informatic sets up the system and just add Haldex Traction’s application. 
 Both the approaches where tested in this master thesis.  
 
 The exact same test application was used in both approaches and with the same OIL-file 
made with the help of the OIL-configurator that was included with osCAN. 
 
 

6.4.1 Using Haldex Traction’s makefiles 
This approach was tried as a first attempt to minimise the work of converting the system to 
work with OSEK OS. The work of replacing Rubus OS with OSEK OS was done in the 
following steps:  
 The first thing done was to compile the OSEK OS files and the test application in Haldex 
Traction’s makefiles. There were no major problems with this. The second thing was to 
remove all Rubus OS calls in the parts of Haldex Traction’s code that was not used by the test 
application. The part of Haldex Traction’s code that is used to steer the pump does not contain 
any Rubus OS calls, so no translation of OS calls had to be done in the test application. Also 
the start up procedure in Haldex Traction’s application which initiates everything and 
eventually starts Rubus OS, had to be replaced with a new start up procedure that initiates the 
things necessary to control the pump and starts osCAN instead of Rubus OS. When the Rubus 
OS calls were removed from the code it was possible to remove Rubus OS from the linking 
and compilation in Haldex Traction’s makefiles. Also this went well.  
  The next and last thing to do was to include osCAN in the linking procedure in Haldex 
Traction’s makefiles. This is when the problems started. The processor’s memory was 
configured differently in the two systems so this had to be changed in osCAN which 
succeeded after a while. The real problems had to do with the interrupt vector table that is 
needed to start the realtime operating system. osCAN needs the linker flag NOVT (no vector 
table) to work but if this linker flag is introduced in Haldex Traction’s make and linker 
structure it does not work. After trying to get around this for about four weeks without 
succeeding the next approach was tested instead.   
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6.4.2 Using osCAN’s makefiles 
If starting with the correct OIL-configuration but with the single thread empty it is no problem 
to compile and link osCAN and the empty application with the make structure included with 
osCAN.  
 When this was done the code from Haldex Traction’s application necessary to control the 
pump was compiled with osCAN in osCAN’s makefiles. Next step was to add the necessary 
initialisation of Haldex Traction’s pump control software in the osCAN StartUPHook which 
is executed right after the operating system has started but before the scheduler has started. A 
call to the test application was added in the empty body of the time periodic task. This was 
easily done and when it did compile and link the format of the output-file was changed in the 
makefiles to the *.sre format that is used in the processor C167cs. 
 
 The test application behaved in the desired way with the pump spinning up and down 
with a period of four seconds. 
 
 To convert Haldex Traction’s entire application, continue with this approach and port one 
module or task at a time. Use the design suggestions in chapter 5 to make it work. 
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Summary 
OSEK/VDX is an industry standard developed as a joint project by the German and the 
French automotive industry. The goal is to minimise the expenses caused by recurring non-
application related work and to reduce incompability between control units made by different 
distributors caused by the use of different interfaces and protocols.  
 The main goal behind the OSEK/VDX standard is very good. The negative aspects of the 
project is if companies, like for example Haldex Traction, is forced to change their good 
working application not because they need the standard but because they are forced by 
customers. Haldex Traction’s realtime operating system Rubus OS uses static scheduling, 
which is faster and safer than dynamic scheduling but OSEK/VDX does not have a good 
answer to this yet. OSEKtime which uses static scheduling exists but has not been fully 
accepted by the realtime operating system distributors. 
 
 There are some different alternatives on the market when looking for an OSEK/VDX 
realtime operating system. The API of the realtime operating systems is specified by 
OSEK/VDX so the main differences are in how many and how much of the OSEK/VDX 
documents that are implemented, the price and the performance (amount of memory required 
and response times). The OSEK/VDX realtime operating system best suited for a specific 
company depends on that company’s demands from the realtime operating system. The 
OSEK/VDX realtime operating system found to be best suited for Haldex Traction and their 
application is Vector Informatic’s realtime operating system osCAN. 
 
 There are many differences between Rubus OS and osCAN that are described in this 
report. It should not be any problem to make Haldex Traction’s application work like it does 
today with an OSEK OS instead of Rubus OS. If the design suggestions in this report are 
followed the work of changing realtime operating system should not be very large. A rough 
estimation is that this work will take one year for one person including testing or better one 
half calendar year for two persons.    
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