
ISSN 0280-5316
ISRN LUTFD2/TFRT--5731--SE

Investigation of Real-Time Operating
Systems : OSEK/VDX and Rubus

Pontus Evertsson

Department of Automatic Control
Lund Institute of Technology

December 2004

Document name
MASTER THESIS
Date of issue
December 2004

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5731--SE
Supervisor
Karl-Erik Årzén at LTH in Lund
Clas Emanuelsson at Haldex Traction in Landskrona.

Author(s)
Pontus Evertsson

Sponsoring organization

Title and subtitle
Investigation of Real-Time Operating Systems: OSEK/VDX and Rubus (Analys av realtidsoperativsystem: OSEK/VDX
and Rubus)

Abstract
The aim of this work was to investigate the possibilities and consequences for Haldex Traction of starting to use the
OSEK/VDX standard for realtime operating systems. This report contains a summary of the realtime operating system
documents produced by OSEK/VDX. OSEK/VDX is a committee that produces standards for realtime operating systems
in the European vehicle industry. The report also contains a market evaluation of different OSEK/VDX realtime operating
systems. The main differences between OSEK/VDX OS and a realtime operating system named Rubus OS are also
discussed. There is a design suggestion of how to change an application that runs under Rubus OS to make it work with an
OSEK/VDX OS. Finally a test of changing a small test application’s realtime operating system from Rubus OS to the
OSEK OS osCAN is presented.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
48

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

 1

Contents
Contents.. 1
Acknowledgement.. 4
1 Introduction ... 5

1.1 Motivation for this work .. 5
1.2 Haldex AB.. 5

1.2.1 Haldex Traction... 5
The coupling... 6

Basic function of the coupling ... 6
Electronic control unit .. 7
Software architectural design ... 7

1.3 Outline of the report ... 8
2 OSEK/VDX... 9

2.1 Goal with OSEK/VDX... 9
2.2 OSEK/VDX Operating System.. 9

2.2.1 Architecture of the OSEK/VDX operating system ... 9
Task management... 10

Extended tasks.. 10
Basic tasks .. 10

Conformance classes .. 10
2.2.2 Scheduling... 11

Non preemptive scheduling.. 11
Full preemptive scheduling .. 11
Groups of tasks... 11
Mixed preemptive scheduling .. 11

2.2.3 Application modes... 12
2.2.4 Interrupt processing... 12
2.2.5 Event mechanism .. 12
2.2.6 Resource management... 13

Problems with synchronisation mechanisms.. 13
Priority inversion.. 13
Deadlocks ... 14

OSEK Priority Ceiling Protocol ... 14
2.2.7 Alarms ... 14
2.2.8 Error handling, tracing and debugging.. 15

2.3 OSEK/VDX Time-Triggered ... 16
2.3.1 Task management.. 16
2.3.2 Interrupt processing... 16
2.3.3 Synchronisation... 17
2.3.4 Inter-Task Communication ... 17
2.3.5 Error handling ... 17

2.4 OSEK/VDX Communication... 17
2.4.1 Requirements... 17
2.4.2 Communication concept.. 17
2.4.3 Interaction Layer ... 18

Overview .. 18
Message reception .. 18
Message transmission... 18
Notification... 19

 2

Error handling .. 19
2.4.4 Conformance classes ... 19

2.5 OSEK/VDX Network Management... 20
2.6 OSEK/VDX Implementation Language... 20

2.6.1 General concept... 20
3 Some OSEK/VDX RTOS ... 22

3.1 Why OSEK/VDX... 22
3.2 Important factors of OSEK OS for Haldex Traction.. 22
3.3 Eight OSEK/VDX RTOS... 23

3.3.1 Eurosmot ... 23
3.3.2 Ercosek .. 23
3.3.3 OSEKturbo .. 24
3.3.4 RTA-OSEK ... 24
3.3.5 ProOSEK... 25
3.3.6 Nucleus OSEK .. 25
3.3.7 OX-OSEK ... 26
3.3.8 osCAN... 26

3.4 Evaluation of the OSEK/VDX candidates ... 27
4 Rubus OS, Arcticus Systems... 29

4.1 Rubus OS architecture.. 29
4.1.1 The Basic Services .. 29

Clocks and Timers.. 29
Event Log Services... 30
Basic Queue Services ... 30

4.1.2 The Red Kernel Services... 30
Red Schedule.. 30
Red Error Handling .. 30

4.1.3 The Blue Kernel Basic Layer Services ... 30
Blue scheduling .. 30
Blue Kernel Threads... 31
Blue Error Handling ... 31
Signals .. 31
Interrupt Control... 31

4.1.4 The Blue Kernel Thread Co-operation Layer Services ... 31
Mutex ... 31
Message Passing... 32

4.1.5 The Blue Personality Services... 32
4.2 Some differences between OSEK/VDX OS and Rubus OS .. 32

4.2.1 Scheduling... 32
4.2.2 Periodic activities .. 32
4.2.3 Resource management... 33
4.2.4 Application modes... 33

5 Conversion from Rubus OS to OSEK/VDX... 34
5.1 Changes in the scheduling.. 34
5.2 Changes in the resource management .. 35
5.3 Different application modes ... 35
5.4 Translation of the operating system calls ... 36

6 Test application ... 40
6.1 Introduction .. 40
6.2 The test hardware and OSEK OS... 40

 3

6.3 The test application .. 40
6.4 Two different approaches... 42

6.4.1 Using Haldex Traction’s makefiles... 42
6.4.2 Using osCAN’s makefiles ... 43

Summary .. 44
References .. 45

 4

Acknowledgement
The report is the master’s thesis of the Computer Science and Engineering Programme at
Lund Institute of Technology.

 Several people have helped me with my report. I want to thank my supervisor Professor
Karl-Erik Årzén at the Department of Automatic Control, LTH and my other supervisor Clas
Emanuelsson at Haldex Traction.
 I also want to thank the staff at the TTE division of Haldex Traction for their help with
my work.

I want to thank all the RTOS vendors mentioned in this report. Without their information
and help the work would have been impossible.

Finally I want to thank Håkan Larsson for the help with the proofread and I want to thank
Malin Bengtsson for not getting tired of the technical monologue.

 5

1 Introduction

1.1 Motivation for this work
Since it becomes more and more common in the car industry with networks of different
control units made by different distributors in the cars, standards for interfaces and protocols
become more and more important. One industry standard, which grows mostly in the
European vehicle industry, is OSEK/VDX.
 Haldex Traction is a distributor of a limited slip coupling. This product contains an
electrical control unit that reads information from a data bus in the car it is installed in and
therefore the car manufacturers may enforce Haldex Traction to join OSEK/VDX in the
future.

Haldex Traction’s intensions with this master thesis was to deepen their knowledge about
OSEK/VDX, find the best suited realtime operating system with support for OSEK/VDX and
to be better prepared if Haldex Traction later on wants to change their present realtime
operating system to one that supports the OSEK/VDX standard.

1.2 Haldex AB
Haldex [15] is an innovator in the vehicle business area. They provide proprietary systems
and components for cars, trucks and industrial vehicles on the world market. The Haldex
Group consists of four different companies in four product areas. The companies are:

• Haldex Brake Systems: Produces subsystems and components for air brake and
suspension systems for commercial vehicles. Some examples of products are ABS
systems, automatic and manual brake adjusters and disc brakes.

• Haldex Hydraulic Systems: This division mainly produces hydraulic systems for
steer and lift systems for forklifts, construction equipment, and trucks et cetera.

• Haldex Garphyttan Wire: Produces steel-alloyed spring wire products for
applications with precise performance demands.

• Haldex Traction: Produces an All Wheel Drive (AWD) system for
passenger cars.

The group has 4 100 employees and production in North America, South America,

Europe, India and China.

1.2.1 Haldex Traction
Haldex Traction [16] was founded in 1998. Its headquarter is placed in Landskrona and it has
one support office in Detroit, USA. Haldex Traction has 200 employees. The customers are
the VW-group, Ford and General Motors. Currently Volkswagen, Audi, Skoda, Seat, Volvo
and Bugatti use the AWD-system.

 6

The coupling
Haldex Limited Slip Coupling (LSC) is installed in the car to distribute the torque between
the front and the rear axis (Figure 1-1). It can be installed both in front driven and rear driven
vehicles. The coupling is based on a Swedish patent acquired by the Haldex Group.

4000050p
Figure 1-1 Haldex LSC in a front driven car.

Basic function of the coupling
Haldex LSC comprises three different functional parts:

• A hydraulic pump driven by the slip between the front and rear axis.
• A wet multi-plate clutch.
• A computer-controlled throttle valve.

A bit simplified, the unit is a hydraulic pump in which the housing and the annular piston are
connected to one shaft and the piston actuator is connected to the other. When a speed
difference occurs between the two shafts (the rear and the front axes) the pumping starts
immediately and generates an oil flow (Figure 1-2). This oil flow compresses the wet multi
plate clutch causing the speed difference between the axes to decrease. The oil returns to a
reservoir via a controllable valve. The oil pressure, that decides the torque distribution
between the axes, can be adjusted with the help of the controllable valve.

Figure 1-2 Simplified picture of Haldex LSC

 7

Electronic control unit
To control the valve the electrical control unit (ECU) Infineon C167cs is used. It’s a 16-bit
RISC controller with 20 MHZ CPU clock and 256 kB flash memory.
Through the valve the software is able to control the torque transfer characteristics.

The software consists of two parts with different purposes, the base software and the
application software.

The goal of the base software is to control the internal functions of the coupling, for
example to compensate for differences in the viscosity of the oil caused by variations in the
operating temperature. Another example of a task for the base software is to control a small
electric pump that provides the coupling with a low oil pressure to ensure minimum activation
time.

The application software’s function is to make the coupling behave in a desired way in
every different driving situation. In a roundabout one specific behaviour is desired and when
parking another. The state of the car, or the driving situation, is determined with the help of
information from other active systems in the car via a data bus.

Software architectural design
Haldex Traction’s software system is decomposed into four different main subsystems:
Diagnostics application, Control application, Strategic control and Base software.

ECU Hardware

Base software
(Hardware Adaption Layer)

Diagnostics application Control application

Strategic
Control

Hardware dependent
drivers, protocol
managers, RTOS

data flow

Figure 1-3 Haldex Traction’s software architecture

• Base software: It contains all hardware dependant drivers. It also contains

hardware adaptation and protocol managers.
• Strategic Control: This is the supervisory part of the system. It monitors the other

parts of the software and reacts on errors. If a serious error is detected, the strategic control
is able to stop other parts of the software from executing and puts the coupling in a safe
state.

• Control application: It contains the control laws that controls the stiffness of the
coupling, and therefore also the vehicle dynamics.

 8

• Diagnostics application: It contains the code that communicates with tester equipment,
and executes commands from such equipment. If the diagnostics application wishes to
control the coupling, it makes a request to the strategic control, which decides if this is
allowed. The diagnostics application also collects error information and stores errors to the
error log.

All the subsystems in Haldex Traction’s application use the realtime operating system Rubus
OS.

1.3 Outline of the report
The OSEK/VDX standard is described in chapter 2. This includes a summary of the standard
documents OSEK/VDX Operating System, OSEK/VDX Time-Triggered, OSEK/VDX
Communication, OSEK/VDX Network Management and OSEK/VDX Implementation
Language. In chapter 3 there are eight different OSEK/VDX realtime operating systems
presented. The operating systems are also ranked according to the qualities of an OSEK/VDX
realtime operating system that are most important for Haldex Traction. The main differences
between an OSEK/VDX realtime operating system and Rubus OS are described in chapter 4.
Chapter 5 provides a design suggestion for how to convert Haldex Traction’s application if
changing realtime operating system from Rubus OS to an OSEK OS. In chapter 6 is the
operating system of a test application changed from Rubus OS to an OSEK OS.

 9

2 OSEK/VDX
OSEK [1] is the abbreviation for the German term "Offene Systeme und deren Schnittstellen
für die Elektronik im Kraftfahrzeug" (Eng: "Open Systems and the Corresponding Interfaces
for Automotive Electronics"). It was founded in 1993 as a joint project of the German
automotive industry aiming for an industry standard for distributed control units in vehicles.
In 1994 some French automotive companies joined OSEK and introduced their VDX-
approach (Vehicle Distributed eXecutive) which is a similar project started by French
automotive companies. As a result OSEK/VDX was introduced.
 The initial OSEK/VDX partners are Adam Opel AG, BMW AG, DaimlerChrysler AG,
IIIT-University of Karlsruhe, GIE.RE. PSA, Renault, Robert Bosch GmbH, Siemens AG and
Volkswagen AG. Presently there are 65 companies in the OSEK/VDX technical committee.
Among these companies are both vehicle producers like FIAT, Ford, GM Europe and Porsche
and producers of realtime operating systems and tools, like Accelerated Technology, ETAS,
Greenhills and Metrowerks.

2.1 Goal with OSEK/VDX
The motivation for introducing the OSEK/VDX project is high recurring expenses in the
development of non-application related aspects of control unit software and the
incompatibility of control units made by different distributors caused by the use of different
interfaces and protocols.
 The goal is to increase portability and reusability of the application software. This is
achieved by specifying interfaces that are abstract and as application independent as possible
in the areas of real-time operating system, communication and network management. The
user interfaces should also be independent of hardware and network.

2.2 OSEK/VDX Operating System
OSEK/VDX Operating System [2] describes a standard for real time operating systems, which
support efficient utilisation of resources for automotive control unit application software. The
operating system described is a single processor operating system meant for distributed
embedded control units.

The interface between the operating system and the application software is standardised
using a set of system services. The system services are identical for all implementations of the
OSEK/VDX operating system.
 ISO/ANSI-C syntax was used when defining the system services.

2.2.1 Architecture of the OSEK/VDX operating system
There are a few different processing levels defined for an OSEK operating system. In
increasing priority order the processing levels are task level, level for operating system
internal activities and interrupt level. The task level with the lowest priority is where the
application software is executed. The second highest priority level is assigned to the operating

 10

systems internal activities. The interrupt level is assigned the highest priority and this is where
the interrupt service routines are executed.

Task management
When developing complex control applications it is often a good idea to split up the
application into smaller tasks according to their real-time requirements. The operating system
controls which task should be running via the scheduler and it supports parallel and
asynchronous execution of tasks.

Extended tasks
An extended task can be in one of the following four different states: running, ready, waiting
and suspended.

Only one task can be in the running state at a given time. The CPU is assigned to the task
in the running state.

All tasks that are ready to execute are in the ready state. In a context switch the scheduler
decides which task to execute next.

When a task is waiting for an event to occur it is in the waiting state.
When a task is passive and don’t want to execute it is in the suspended state. A task in

the suspended state can be activated and moved to the ready state.

Basic tasks
The state model for basic tasks is exactly the same as the state model for extended tasks
except that it does not have a waiting state. The advantage of basic tasks compared to
extended tasks is that they require less system resources (RAM). A short description of the
different states follows:

 Only one task can be in the running state at a given time. The CPU is assigned to the
task in the running state.

All tasks that are ready to execute are in the ready state. In a context switch the scheduler
decides which task to execute next.

When a task is passive and do not want to execute it is in the suspended state. A task in
the suspended state can be activated and moved to the ready state.

Conformance classes
To overcome the problem that different application software have various requirement on the
system and to be able to use the OSEK operating system on a wide range of hardware the
conformance classes were introduced. There are four different conformance classes and they
are upward compatible.
 The conformance classes defined are:

• BCC1 only supports basic tasks and are limited to one request per task (meaning that
the operating system cannot handle activations of a basic task already activated). It is
also limited to one task per priority.

• BCC2 is like BCC1 but supports multiple requesting of task activation, which means
that if a task that is already activated receives one or more activation requests these
request are queued. The activation requests are queued per priority in activation order.
BCC2 does also support more than one task per priority.

 11

• ECC1 is like BCC1 but with support for extended tasks.
• ECC2 is like BCC2 but with support for extended tasks and multiple requesting of

task activation are not allowed.

2.2.2 Scheduling
All tasks are assigned a priority. Zero is the lowest priority and larger numbers define higher
priorities. Priorities are defined statically and cannot be changed at runtime. At a context
switch the task with the highest priority gets to execute. Tasks of identical priority are
activated in FIFO (First In First Out) order. OSEK/VDX supports the following scheduling
policies: non preemptive scheduling, full preemptive scheduling, groups of tasks, mixed
preemptive scheduling.

Non preemptive scheduling
When using a non preemptive scheduling policy task switching is only allowed at given
points in the code. The points of rescheduling are the following:

• When a task terminates successfully.
• When a task terminates successfully and explicitly activates a successor task.
• When an explicit call of the scheduler is made.
• When a transition into the waiting state takes place.

 When using non preemptive scheduling it is possible that a high priority task has to wait
for a task with lower priority to finish its execution before the high priority task can start.

Full preemptive scheduling
When using full preemptive scheduling the currently running task may be preempted at any
instruction by a task with a higher priority. This means that the latency period is independent
of the run time of lower priority tasks. When the system is fully preemptive one must always
expect to be pre-empted by another task. It is possible to block the scheduler if a critical
region must not be preempted.

Groups of tasks
By defining groups of tasks it is possible to allow tasks to combine the aspects of preemtive
and non preemptive scheduling. Tasks within a group behave a bit different. For a task that
has the same or lower priority as the task with the highest priority within the group, the tasks
within the group acts like non preemptive tasks. For a task that has higher priority than the
task with the highest priority within the group, the tasks within the group acts like preemptive
tasks.

Mixed preemptive scheduling
The mixed preemptive scheduling was introduced to gain the benefits of both preemptive and
non preemptive scheduling. In a system with a few parallel threads with long execution times
preemptive scheduling is to prefer while in a system with many very short tasks a non
preemptive scheduling policy is preferable.

 12

 The reason not to use preemptive scheduling is when a task switch consumes the same
amount of time as the execution of the task or when one have limited amount of RAM or
finally if a task must not be pre-empted.
 When using the mixed preemptive scheduling the scheduling policy depends on the
scheduling policy of the running task. If the running task is preemptable then preemptive
scheduling is used and if the running task is non preemptable then non preemptable
scheduling is used.

2.2.3 Application modes
Application modes are designed because many micro control units (MCUs) may run several
completely independent applications, for example normal operation or factory test. The
application mode has to be decided at start up. It is not allowed to change application mode at
runtime.
 Normally the different application modes have their own set of tasks, ISR's etc. but if the
same functionality is needed again, in a different application mode, it is allowed and
recommended to share between the modes.
 At start up it is up to the user code, using no system services, to determine which
application mode that should be started and pass it as a parameter to the API-service StartOS.
It should be fast and easy to discover which system mode to start to avoid a long and
complicated start up procedure.

2.2.4 Interrupt processing
OSEK/VDX describes two categories of interrupts, ISR category 1 and ISR category 2. The
difference between category 1 and 2 is that it’s not possible to use operating system services
within an interrupt service routine of category 1 and after the ISR has finished, the execution
continues at the exact instruction where the interrupt has occurred. ISR's of category 2 are
allowed to use some operating system services, for instance the Activate Task service routine
and after termination of the ISR of category 2 a rescheduling will take place.
 Inside the ISR no rescheduling takes place. The scheduling of the ISR's is hardware
dependent and therefore it is not specified in OSEK/VDX. The number of interrupt priorities
also depends on the hardware and on the implementation.
 It is always possible to disable interrupts, both within an interrupt service routine and in
an ordinary task.

2.2.5 Event mechanism
An event is always owned by an extended task. An extended task can be the owner of several
events. The events are used for synchronization, message passing and so on.
 All tasks, both basic and extended, can set any event but only the owner of the event can
wait for and clear the event.

When an extended task is waiting for an event it is placed in the waiting state. When the
event occurs it is moved to the ready state and the operating system reschedules. If a task is
waiting for several events it is moved to the ready state when the first event occurs. If an
extended task tries to wait for an event that has already occurred, the task remains in the
running state.

 13

2.2.6 Resource management
Resource management is used to control concurrent access to a resource when several tasks
with different priorities try to gain access to it. The resource management is useful under the
following circumstances:

• Using preemptable tasks.
• If tasks and interrupt service routines share resources.
• If interrupt service routines share resources.

The resources could for instance be memory, hardware areas or the scheduler. The

resource management handles the following problems:

• Two tasks cannot occupy the same resource at the same time (mutual exclusion).
• It prevents priority inversion, see section 2.2.6.1.1.
• It prevents dead locks, see section 2.2.6.1.2.
• An attempt to access a resource never results in a waiting state because of the OSEK

Priority Ceiling Protocol, described in chapter 2.2.6.2 OSEK Priority Ceiling Protocol.
• Two tasks or interrupt service routines cannot occupy the same resource at the same

time (this is true if the resource management is extended to include interrupts.)

Problems with synchronisation mechanisms
Priority inversion
Priority inversion is a typical problem with synchronization mechanisms. It means that a
lower-priority task delays the execution of a higher-priority task despite that they do not share
any common resources.
 The solution to this problem in OSEK is the OSEK Priority Ceiling Protocol.
Figure 2-1 shows the problem of priority inversion. Task T1 has the highest priority and task
T3 the lowest. Task T3 occupies semaphore S1 and is then pre-empted by T1. Task T1 tries to
access the semaphore S1 but is denied because it is already occupied by T3. Because of S1 is
occupied T1 enters the waiting state. Now T2 is put in the running state. After T2 is finished
T3 gets to run again and releases the semaphore S1. Now after the low priority threads are
finished the high priority thread T1 is put in the running state again. The low priority threads
delayed T1. Also the thread T2 that did not use the semaphore.

Figure 2-1 Priority inversion

 14

Deadlocks
Deadlock is another problem of synchronisation mechanisms. Deadlock means that task
execution is impossible because of infinite waiting for mutually locked resources.
 Figure 2-2 shows the problem of deadlocks. Task T1 has the highest priority. When the
task T1 is running it accesses the semaphore S1 and then stops, waiting for an event to occur.
The task T2 is transferred to the running state and occupies the semaphore S2. An event
happened and T1 is put in the running state. T1 tries to access the semaphore S2 but is denied
because it’s already occupied by the task T2. Now T2 is back in the running state and tries to
access the semaphore S1 but is denied because the semaphore is already occupied by the task
T1. This is a deadlock.

Figure 2-2 Deadlock

OSEK Priority Ceiling Protocol
The OSEK priority ceiling protocol exists to avoid priority inversion and deadlocks. It works
as follows:
All resources are assigned a ceiling priority. The ceiling priority is equal to or higher than the
priorities of all tasks that have access to the resource or any of the resources linked to this
resource. The ceiling priority must be lower than the lowest priority of all the tasks that do not
have access to the resource and which have priorities higher than the task with the highest
priority of all the tasks that access the resource.

When a task tries to access a resource its priority is raised to the ceiling priority of that
resource. When a task releases a resource the priority of that task is lowered to its normal
priority.

The OSEK priority ceiling protocol with extensions for interrupt levels works exactly as
described above but the ceiling priorities are set with regard to both the tasks and the interrupt
service routines that have access to the resources.

 2.2.7 Alarms
OSEK/VDX supports the handling of recurring events by alarms and counters. An alarm can
either be activated at regular time intervals or for example by encoders at certain positions of
an axis. An alarm can be either a single alarm or a cyclic alarm. Counters and alarms are
defined statically.

 15

 An alarm must be connected to one counter and one task or one alarm-callback routine.
The alarm will be activated when the counter it is related to reaches a predefined value. When
the alarm is activated it can do one of the following three things depending on the
configuration:

• Activate the alarm-callback routine (a short function that runs with category 2
interrupts disabled).

• Activate the task.
• Set an event for the task.

2.2.8 Error handling, tracing and debugging
To simplify error handling, tracing and debugging OSEK/VDX provides different hook
routines. The hook routines allow user defined actions within the OS internal processing.

Features of hook routines:

• Hook routines are called by the operating system.
• They have higher priorities than all tasks.
• They cannot be interrupted by category 2 interrupt service routines.
• The hook routines are part of the operating system.
• They are implemented by the user and have user-defined functionality.
• Their use of API functions is restricted.

The following five hook routines exist in an OSEK/VDX OS:

• ErrorHook
• PreTaskHook
• PostTaskHook
• StartupHook
• ShutdownHook

The ErrorHook is activated if a system service returns a StatusType value that is not

equal to E_OK. In the Error Hook the user is able to access some additional information to
support a more effective error management.
 The PreTaskHook and the PostTaskHook may be used for debugging or time
measurement purposes. The PreTaskHook is called every time directly after a new task enters
the running state. The PostTaskHook is called every time directly before the old task leaves
the running state.
 The StartupHook is called every time at system start up. The purpose of the StartupHook
is to perform user defined start up functions. After a reset the user is first able to execute
hardware specific code and then make the StartOS call. After this call the operating system
runs its initialisation code and then calls the StartupHook. In the StartupHook the user has the
possibility to execute user-defined initialisation code. When the StartupHook is finished the
operating system enables user interrupts and starts the scheduler.
 When the operating system call ShutdownOS is called by the application or because of a
fatal error the ShutdownHook is started. The user is able to define any system behaviour in
the ShutdownHook. It is even allowed not to return from the routine.

 16

2.3 OSEK/VDX Time-Triggered
OSEK/VDX Time-Triggered (OSEKtime) [6] is another description of an OSEK/VDX
realtime operating system with the main difference that it uses static scheduling. All important
services, i.e. interrupt handling, dispatching, system time and clock synchronization, local
message handling and error detection mechanisms are supported. If both static and dynamic
scheduling is desired for the application it is possible to combine OSEK/VDX Time-
Triggered with OSEK/VDX OS. Then OSEK/VDX OS gets the CPU when OSEK/VDX
Time-Triggered is in the idle mode.

2.3.1 Task management
OSEK/VDX Time-Triggered uses time-triggered tasks. A time-triggered task has three
different task states:

• Running: Only one task in the entire system can be in the running state at any point
in time. The task in the running state is the task that is using the CPU at that point.
Only the OSEKtime Dispatcher can set a task in the running state.

• Preempted: A task is placed in the pre-empted state if another time-triggered task is
activated before the first task has finished its execution. It leaves the pre-empted state
and is placed in the running state again when the pre-empting tasks changes from the
running state to the suspended state.

• Suspended: All tasks in the suspended state are passive and can be activated by the
Dispatcher.

 The tasks are scheduled statically and the information on the task activation times is
stored in the dispatcher table. The OSEKtime Dispatcher is responsible for starting the tasks
at the right time. There is also functionality for monitoring the deadlines. This is also handled
by the dispatcher but with the help of the Deadline Monitoring dispatcher table. If a task
violates its deadline an error hook is started.
 In OSEK/VDX Time-triggered there is a special task named ttIdleTask. This task is
always the first task that is started by the OSEKtime dispatcher. That means that this task
always gets the CPU if there are no other tasks activated. If one combines OSEK/VDX Time-
triggered with OSEK/VDX OS, OSEK/VDX gets the CPU instead of the ttIdleTask when no
tasks or interrupt service routines in OSEKtime wants to execute.

2.3.2 Interrupt processing
Interrupt service routines are also supported by OSEK/VDX Time-triggered but with one
restriction. When configuring the operating system for the application one has to provide the
operating system with information on how often a particular interrupt service routine is
allowed to execute. One has to define an interval in time where each interrupt may occur at
most once. This makes it possible for the static scheduler to calculate worst case execution
times even when interrupts are allowed.

 17

2.3.3 Synchronisation
OSEK/VDX Time-triggered has a synchronisation mechanism available to make it possible
for several different electrical control units to synchronise their local time with a global time
base. The synchronisation is done at start up and is adjusted to the global time every time after
a dispatcher round.

2.3.4 Inter-Task Communication
OSEKtime also supports external message handling. The functionality that has to be
supported by every OSEKtime implementation is described in the OSEKtime FTCom
specification [21].

2.3.5 Error handling
OSEKtime also supports error handling. The error handling in OSEKtime is the same as in
OSEK/VDX OS.

2.4 OSEK/VDX Communication
OSEK/VDX Communication [3] describes a standard for the communication between tasks
and interrupt service routines within and between ECUs. There are different conformance
classes with different functionalities. The conformance classes CCCA and CCCB only
support internal communication, i.e. between tasks and ISR’s within an ECU, while the
conformance classes CCC0 and CCC1 also support external communication, i.e. between
ECUs. Since Haldex Traction’s application only needs internal communication this will be the
focus.

2.4.1 Requirements
The OSEK COM specification fulfils the following requirements:

• General communication functionality.
• Portability, reusability and interoperability of application software.
• Scalability.
• Support for Network Management (NM).

2.4.2 Communication concept
OSEK COM provides an API with services for the transfer of messages using send and
receive operations. OSEK COM specifies the Interaction Layer (IL).
 The internal communication is handled entirely by the interaction layer but the external
communication has to use the Network Layer and the Data Link Layer. OSEK COM does not

 18

specify the Network Layer or the Data Link Layer but it defines the minimum requirements to
support all features of the Interaction Layer.

2.4.3 Interaction Layer
Overview
The communication in OSEK COM is based on messages. Messages are sent in the form of
message objects and the content of the messages is user defined. All messages and message
properties have to be defined statically via the OSEK Implementation Language (OIL).
 The IL describes an API to handle messages. It has functionalities for initialisation, data
transfer and communication management.
 Message identifiers are used to identify message objects. Messages are sent by sending
message objects and received by receiving message objects. The OSEK COM supports m-to-n
communication. This means that zero or more senders are able to send messages to the same
sending message object and sending message objects are able to store messages in zero or
more receiving message objects. One receiving message object receives messages from
exactly one sending message object.

 There are two types of receiving message object. They can be either queued or unqueued.
The queued receiving message object has a FIFO (first in first out) queue to store incoming
message. The size of the queue must be set to a value different from zero. If a queue is full all
the messages it receives are lost. A message can only be read once in a receiving queue since
the read operation removes the oldest message from the queue. If the queue is empty the IL
does not provide any message data to the application. In the case of m-to-n communication
each receiver has its own message queue and the messages from these queues are consumed
independently.
 The unqueued receiving message object only has place for one message object. A
message can be read more than once. The read operation always returns the latest message. If
no message has been received since the start of the IL the application receives a message
value set at initialisation.

Message reception
Message data are copied from the message object to the application message when the API
services ReceiveMessage or ReceiveDynamicMessage are called.

It is possible to connect a reception filter to a message object. The message filter uses a
predefined filtering algorithm to check if the message fulfils certain conditions. If it does not,
the message is discarded. Different filtering algorithms can be defined for each message.

Message transmission
When sending an internal message the IL routes the message directly to the receiving part of
the IL. A message can be stored in zero or more message objects when it’s transferred. The
message is sent when the SendMessage or SendZeroMessage API service is called. When a
zero-length message is sent no data transfer takes place.

 19

Notification
OSEK COM describes a notification mechanism to be able to determine the final status of a
previously called send or receive operation. The notification is only performed if the message
is properly received. This means that there is no notification if the filtering algorithm discards
the message or if it is lost because of a full message queue.
 There are four different notification classes but only the first class is supported for
internal communication. Notification Class 1 activates the configured notification mechanism
directly after the message has been stored in the receiving message object.
 The following four notification mechanisms exist:

• Callback routine: The IL calls a user defined callback routine.
• Flag: A flag is set that can be check by the application.
• Task: The IL activates a user-defined task.
• Event: The IL sets an event for a user-defined task.

A given sender or receiver is limited to use only one of the notification mechanisms.

Error handling
OSEK COM also provides an error service. There are two different kinds of errors defined:

• Application error: The requested API service was not executed correctly but the IL’s
internal data are correct. The centralised error treatment is called and after that the
decentralised error treatment is called with error status information.

• Fatal errors: A fatal error means that the IL cannot assume correctness of its
internal data. This leads to a call to the centralised system shut down.

Two levels of error checking are provided by the OSEK COM:

• Extended error checking: The extended error checking is used under the

development of an application. It supports more accurate error checking but requires
more execution time and more memory consumption.

• Standard error checking: The standard error checking is less demanding and is
used in a fully debugged system.

2.4.4 Conformance classes
To support different application requirements and specific system capabilities the
communication specification supports four different Communication Conformance Classes
(CCCs). The following communication conformance classes are defined:

• CCCA: Defines the minimum requirements for supporting the OSEK/VDX
Communication document. It only supports internal communication for unqueued
messages. No message status information is supported.

• CCCB: This CCC does also only support internal communication and all features of
CCCA plus queued messages and message status information.

 20

• CCC0: Defines the minimum requirements for supporting both internal and external
communication. All features of CCCA are supported plus some minimum features to
support external communication.

• CCC1: Supports all features of OSEK/VDX COM.

2.5 OSEK/VDX Network Management
The purpose of the network management [4] is to make a standard for network management
in a network of ECUs that all uses OSEK/VDX compliant realtime operating systems. It
becomes more and more common in the vehicle industry with networks of ECUs that
communicate with each other, where all the nodes are made by different manufacturers. To
ensure safety and functionality in such networks network management becomes important.
 Network management in OSEK/VDX means the possibility for all nodes in the network
to know the status of all other nodes and thereby detect failures or missing nodes in the
network. The network shall also support network related diagnostic features.
 The uses of these functions are up to the system responsible but to make this possible
every node in the network have to support OSEK/VDX Network Management.

2.6 OSEK/VDX Implementation Language
OSEK/VDX implementation language (OIL) [5] describes a standard for the configuration of
an application using OSEK/VDX. The goal is to make the software more portable between
different OSEK/VDX realtime operating systems. The OIL-file may be hand-written or
generated by an OIL configuration tool. Most OSEK/VDX realtime operating system
suppliers have OIL configuration tools that read and generate OIL-files according to a user
defined specification of the system.

2.6.1 General concept
An OSEK/VDX application is described with the help of a set of OIL objects. The CPU is a
container for all these OIL objects. An OIL object consists of a predefined set of attributes
and references. OIL defines all standard attributes for each OIL object.
 A specific OSEK/VDX implementation may have additional attributes in the OIL objects
but it is not allowed to change a standard attribute or to add a new OIL object.

The following OIL objects shall be used to describe an OSEK/VDX application with
OIL:

• CPU: A container for all other objects.
• OS: The OS object is used to define OSEK OS properties for

the application.
• APPMODE: Used to define different application modes.
• ISR: This is where the interrupt service routines of the

application are defined.

 21

• RESOURCE: A resource is a code segment that can be occupied by a
task.

• TASK: A task that is scheduled by the realtime operating system.
• COUNTER: A counter is used as hardware/software tick source for

alarms.
• EVENT: An event that can be sent to a task.
• ALARM: An alarm is based on a counter. When it activates it can

activate a task, set an event or activate an alarm-callback routine.
• COM: This is where the standard attributes for the

communication subsystem are set.
• MESSAGE: The message attribute belongs to OSEK COM and defines

the supplier-specific attributes to configure data exchange through messages between
different tasks, interrupt service routines and CPUs.

• NETWORKMESSAGE: The message attribute belongs to OSEK COM and defines
the OEM-specific attributes to configure data exchange through messages between
different tasks, interrupt service routines and CPUs.

• IPDU: An IPDU is defined in OSEK COM. IPDU is used when
transporting messages between different CPUs.

• NM: This is where the standard attributes for the network
management subsystem are set.

 22

3 Some OSEK/VDX RTOS

3.1 Why OSEK/VDX
The technical benefits of OSEK/VDX are described under the heading Section 2.1. In this
chapter the market related benefits of OSEK/VDX presented.

Below a table of the leading global vehicle producers of 2002 is presented [20]. Many of
the largest vehicle producers are either in the list of initial partners of OSEK/VDX (steering
committee) or in the technical committee. Haldex Traction has three large customers, the
VW-group, Ford and General Motors. They are all members of either the OSEK/VDX
steering committee or the OSEK/VDX technical committee.

Nr Vehicle producers Units

2002
OSEK/VDX
partners

Haldex Traction’s
customers

1 General Motors 8 504 434 Technical committee Customer
2 Ford Motor Co. 6 819 594 Technical committee Customer
3 Toyota Motor Corp. 6 167 703 - -
4 Volkswagen AG 4 989 030 Steering committee Customer
5 Daimler Chrysler AG 4 540 900 Steering committee -
6 PSA/Peugeot-Citroen

SA
3 267 474 Steering committee -

7 Hyundai Motor Co. 2 939 499 - -
8 Honda Motor Co. 2 820 000 - -
9 Nissan Motor Co. 2 735 530 - -
10 Renault SA 2 403 975 Steering committee -
11 Fiat S.p.A 2 079 336 Technical committee -
12 Mitsubishi Motors Corp. 1 847 800 - -
13 Suzuki Motor Corp. 1 707 392 - -
14 BMW Group 1 057 344 Steering committee -
15 Mazda Motor Corp. 964 800 - -
Table 3-1 Leading global vehicle producers

3.2 Important factors of OSEK OS for Haldex Traction
Haldex Traction’s currently used realtime operating system is Rubus OS from the Swedish
company Arcticus. Since the AWD control application works very well with Rubus OS the
main reason to switch operating system is to follow the OSEK/VDX standard. Here follows a
list of Haldex Traction’s most important requirements for the OSEK/VDX realtime operating
systems and their suppliers:

• They have to support the hardware ST10F272 from ST Micro Electronics, which
Haldex Traction will be using.

• The realtime operating system has to be certified for the OSEK/VDX OS standard.
• The realtime operating system should be well tested and preferably used by some

well-known companies.
• A low price is of great importance.
• The supplier shall be a large and well-established company.

 23

• It is good if they have support in Sweden.
• It is good if they support the compiler named Tasking.

3.3 Eight OSEK/VDX RTOS
An extensive market research based on information found on the web and a couple of reports
[17][18][19] resulted in the following eight realtime operating systems for further
investigations:

• Eurosmot from Euros
• Ercosek for Etas (Etas Group)
• OSEKturbo from Metrowerks
• RTA-OSEK from LiveDevices (Etas Group)
• ProOSEK from 3Soft
• Nucleus OSEK from Accelerated Technology
• OX-OSEK from Trialog
• osCAN from Vector Informatic

3.3.1 Eurosmot
The company Euros develops Eurosmot [7][20]. Euros has been in the OSEK/VDX business
for a while. They do not support ST10F272 today but the will do in the future.

OSEK/VDX certified Version 2.2.1
Conformance classes BCC1, BCC2, ECC1, ECC2
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking
Number of offices in the company 1
Number of employees ?
When the company was founded ?
Included in the price OS, OIL configurator
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden No
Introduced on the market 1997 under the name OSEKplus
Major companies that use the RTOS ContiTemic, Daimler Chrysler

3.3.2 Ercosek
This realtime operating system Ercosek [8][20] was developed by Etas but when LiveDevices
joined the ETAS Group they decided to concentrate on LiveDevices OSEK/VDX OS
implementation RTA-OSEK.

 24

OSEK/VDX certified The system was replaced by RTA-OSEK
Conformance classes -
OIL support -
Minimum resource usage -
Compiler -
Number of offices in the company -
Number of employees -
When the company was founded -
Included in the price -
Price for 10 developers -
Price for the operating system -
Support in Sweden -
Introduced on the market -
Major companies that use the RTOS -

3.3.3 OSEKturbo
OSEKturbo [9][20] is developed by Metrowerks. OSEKturbo does not support the
conformance classes BCC2 and ECC2 that Haldex Traction needs, unless they do not want to
change the current implementation.

OSEK/VDX certified Version 2.2
Conformance classes BCC1, ECC1
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking 7.0
Number of offices in the company 15
Number of employees 550
The company was founded in 1985
Included in the price OS, configuration tool
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden No, onsite training Є 3 000 for two days +

travel costs.
Introduced on the market 1995
Major companies that use the RTOS Siemens VDO, Daimler Chrysler

3.3.4 RTA-OSEK
RTA-OSEK [10][20] is developed by LiveDevices that is part of the Etas Group. The main
features with this real time operating system are the development tools, Planner and Builder.

OSEK/VDX certified Version 2.2
Conformance classes BCC1, BCC2, ECC1, ECC2
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking 7.5

 25

Number of offices in the company 1
Number of employees 35
When the company was founded 1994
Included in the price OS, Planner, Builder
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden No, they are willing to go here from UK if

needed.
Introduced on the market 1999
Major companies that use the RTOS Tier1, Volvo OEMs

3.3.5 ProOSEK
ProOSEK [11][20] is developed by the German company 3Soft. For Swedish customers it is
sold and supported by the Swedish company ENEA with an office in Malmö.

OSEK/VDX certified Version 2.2
Conformance classes BCC1, BCC2, ECC1, ECC2
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking 8.0
Number of offices in the company 2
Number of employees 201
When the company was founded 1988
Included in the price OS, OIL configurator
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden Yes, ENEA has sale and support in Sweden
Introduced on the market ?
Major companies that use the RTOS BMW, Audi

3.3.6 Nucleus OSEK
Nucleus OSEK [12][20] is developed by the company Accelerated Technology.

OSEK/VDX certified Version 2.2
Conformance classes BCC1, BCC2, ECC1, ECC2
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking 7.5
Number of offices in the company 7
Number of employees 3700
When the company was founded 1990
Included in the price OS, OIL configurator
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden One person in Sweden, offices in Finland and

 26

UK.
Introduced on the market 2001
Major companies that use the RTOS ?

3.3.7 OX-OSEK
OX-OSEK [13][20] is developed by TRIALOG, but it is not certified for OSEK/VDX. It
supports OSEK/VDX conformance classes BCC1 and ECC1 but since OSEK/VDX is a
protected trademark of Siemens AG, TRIALOG is not allowed to claim that OX-OSEK
supports OSEK/VDX because the OSEK/VDX committee has not certified it.

OSEK/VDX certified No, support OSEK/VDX
Conformance classes BCC1, ECC1
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking
Number of offices in the company 1
Number of employees 30
When the company was founded 1987
Included in the price OS
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden No
Introduced on the market 1998
Major companies that use the RTOS Valeo

3.3.8 osCAN
Vector Informatic that is a part of Vector develops osCAN [14][20]. The product is interesting
since it has a good price, support in Sweden, is developed by a large company with 15 years
in the market and it supports all conformance classes and implementations that Haldex
Traction needs.

OSEK/VDX certified Version 2.2
Conformance classes BCC1, BCC2, ECC1, ECC2
OIL support Yes
Minimum resource usage See appendix A (confidential)
Compiler Tasking
Number of offices in the company 6
Number of employees 500
When the company was founded 1988
Included in the price OS, OIL configurator
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden Yes
Introduced on the market 1998
Major companies that use the RTOS GM, Ford, VW, Saab, Volvo Car

 27

3.4 Evaluation of the OSEK/VDX candidates
The conclusion after the evaluation of the different realtime operating systems is that Vector
Informatics’ OSEK/VDX implementation osCAN is the operating system best suited for
Haldex Traction.
 The first RTOS that was excluded from the evaluation was Etas’ Ercosek. The reason
was that when LiveDevices joined the ETAS Group, ETAS decided to concentrate on
LiveDevices OSEK/VDX OS implementation RTA-OSEK, so Ercosek was replaced by RTA-
OSEK.
 The most important factor in the evaluation is that the realtime operating system supports
Haldex Traction’s new hardware, ST10F272 from ST Micro Electronics. This demand did not
eliminate any of the alternatives since all the examined operating systems support the
hardware ST10F272.
 The second most important factor is that the implementation of the operating system is
certified for some version of OSEK/VDX. OX-OSEK is not certified and was therefore
excluded from the evaluation.
 To be able to send messages between tasks in Haldex Traction’s application an
implementation of OSEK/VDX that also supports the communication specification, OSEK
COM, is needed. Among the remaining seven RTOS everyone except two do support OSEK
COM. The implementations that are missing the OSEK COM are Euros’ Eurosmot and
Metrowerks’ OSEKturbo. Left after the exclusion are RTA-OSEK, Nucleus OSEK, ProOSEK
and osCAN.
 RTA-OSEK developed by LiveDevices and Nucleus OSEK developed by Accelerated
Technology are the newest realtime operating systems in the evaluation. RTA-OSEK has been
on the market approximately five years under various names and it is also an expensive
product. There are two main reasons why Nucleus OSEK is not suited for Haldex Traction.
The major disadvantage is that Accelerated Technology cannot guarantee that their realtime
operating system works together with Vector’s CAN-devices, which is a demand from Haldex
Traction. The other disadvantage is the fact that Nucleus OSEK is the newest system in the
evaluation.
 Both of the two final systems seem to be good choices with regard to Haldex Traction’s
demands. One advantage with 3Softs ProOSEK is that it supports OSEK/VDX Network
Management but this was not considered necessary.
 The system that was chosen was Vector’s osCAN. It supports the necessary hardware, is
certified for OSEK OS, OIL and COM, it has been on the market since 1998 and is well
tested. For Haldex Traction’s volume of production and number of developers osCAN is also
the least expensive system of all realtime operating systems in the evaluation. Vector
Informatics is a large company with about 500 employees and one support office in
Gothenburg, Sweden. osCAN is also the operating system with shortest response time among
the four systems RTA-OSEK, Nucleus OSEK, ProOSEK and osCAN.

Table 3-2 is a simplified illustration of how the choice of an OSEK OS was made.

 28

OSEK OS Hardware

support
OSEK/VDX
certified

OSEK COM Long time on
the market

Best price

osCAN X X X X X
ProOSEK X X X X -
Nucleus OSEK X X X - -
RTA-OSEK X X X - -
OSEKturbo X X - - -
Eurosmot X X - - -
OX-OSEK X - - - -
Ercosek - - - - -
Table 3-2 Illustration of the elimination of OSEK OS. A (X) indicates that the OSEK OS
fulfils the criteria. A (-) indicates that the OSEK OS is eliminated.

 29

4 Rubus OS, Arcticus Systems
Rubus OS [20][23] does not support OSEK/VDX but it is the realtime operating system that
Haldex Traction is currently using. The Swedish company Arcticus Systems develops it.

OSEK/VDX certified No
Conformance classes -
OIL support -
Minimum resource usage See appendix A (confidential)
Compiler Tasking 7.5
Number of offices in the company 1
When the company was founded 1985
Included in the price OS
Price for 10 developers See appendix A (confidential)
Price for the operating system See appendix A (confidential)
Support in Sweden Yes, office in Stockholm.
Introduced on the market ?
Big companies that uses the RTOS Haldex Traction, Volvo

4.1 Rubus OS architecture
Rubus OS is a realtime operating system designed for safety critical applications. The system
is scalable why it could be used even in small micro controllers. The scheduling supports both
statically and dynamically scheduled threads.

4.1.1 The Basic Services
The basic services in Rubus contains the services common for both Red and Blue threads. The
services are basic clocks and timers, event log services and basic queue services.

Clocks and Timers
There are two types of clocks in Rubus OS, the basic clock and the blue clock. The basic
clock is the system clock representing the real-time clock for the system. The resolution of the
basic clock is the smallest resolution possible for the Red and Blue timers. The blue clock is
based on the basic clock. At regular intervals the value of the basic clock is copied to the blue
clock. The blue clock has a resolution that is equal to or less than the resolution of the basic
clock. The benefits of having two clocks are simplified time handling in the Blue Kernel.
 Rubus OS supports two types of timers, one shot and periodic. The initial time expiration
can be defined either relative or absolute for both types of timers. The one shot timer is
activated once while the periodic timer is activated time-periodically.

 30

Event Log Services
With this service it is possible to log Red and Blue run-time events with a time stamp added
to each event. It is up to the user to specify which events to log. The log is a FIFO queue and
can be used to analyse the execution behaviour with the Rubus Execution Analyser tool.

Basic Queue Services
This service makes it possible to store information in a FIFO queue. The queue may be used
for communication between all different threads in the system.

4.1.2 The Red Kernel Services
The Red Kernel manages the execution of Red Threads. A Red Thread in Rubus OS is an
object with the following characteristics. A Red Thread consists of program code. A Red
Thread is part of a Red Schedule, which is statically allocated. A Red Thread executes
according to a Red Schedule. The execution of a Red Thread cannot be blocked.
 A Red Schedule consists of a number of Red Threads. A Red Schedule can represent an
application or a Red Execution Mode in an application. The application modes can be
switched at runtime.

Red Schedule
A Red Schedule consists of sets of Red Threads. Each set of Red Threads has its own release
time. The threads in a set are executed in sequence. The running behaviour of a Red Thread is
defined in the Red Schedule. The set of Threads that a Red Thread belongs to decides the
release time of the thread, deadline for the thread is also defined in the Red Schedule and the
memory area for the Red Schedule. The Red Schedule is executed periodically with the period
specified by the user.

Red Error Handling
All Red OS calls returns the error status of the operation. If the Red Kernel detects an error
the user defined function redError is called.

4.1.3 The Blue Kernel Basic Layer Services
The Blue Threads executes in the left over time when no Red Threads wants to execute. The
Blue Kernel is responsible for run-time services for management of the Blue Threads, the
execution of the Blue Threads, services for co-operation between threads and memory
management.
 A Blue thread consists of program code and it can be created and terminated. A Blue
Thread executes according to the scheduling policy and the priority of the thread. A Blue
Thread object is statically allocated. When executing a Blue Thread can be blocked waiting
for a signal.

Blue scheduling
A Blue Thread is always in one of the following states:

 31

• Dormant: The thread is not alive, not created or terminated.
• Ready: The thread is ready to execute.
• Blocked: The thread is blocked, waiting for a signal.
• Running: The thread is executing.

The Blue Scheduling is performed at runtime and the scheduling policy used is FIFO

scheduling. Every priority have one FIFO queue. When a Blue Thread becomes ready it is
placed in the last place in its priority queue. The first thread in the queue with the highest
priority gets to execute when no other thread is in the running state.

Blue Kernel Threads
The Blue Kernel has two internal Blue Threads for its operation, the Blue Kernel Thread and
the Blue Idle Thread.
 The Blue Kernel Thread handles time supervision. It has the highest priority among the
blue threads and executes at every Blue timer tick.
 The other Blue Kernel Thread is the Blue Idle Thread. The Blue Idle Thread executes
when no other threads want to execute and has the lowest priority.

Blue Error Handling
All the Blue OS calls returns the error status of the operation. If the Blue Kernel detects an
error the user defined function redError is called.

Signals
Rubus OS also has support for signals. With the signal mechanism it is possible to pause a
Blue Threads execution and wait for a selected set of signals. The first signal in the set that
arrives activates the thread. The signals can also be used for synchronization.

Interrupt Control
The Blue Kernel Basic Layer also has services for interrupt control. These services make it
possible for a Blue Thread to capture an interrupt and to protect critical sections of code.

4.1.4 The Blue Kernel Thread Co-operation Layer Services
Rubus OS is a scalable RTOS and the Blue Kernel Thread Co-operation Layer is optional.
The layer contains functionality for the management of synchronization of resources and
communication between Blue Threads.

Mutex
Mutexes are a synchronization mechanism between threads. A mutex in Rubus OS has the
following characteristics:

• A mutex is a type of binary semaphore.
• The owner of a mutex is the Blue thread performing the lock operation.

 32

• A mutex can be locked and unlocked but it is only the owner that can perform
unlocking.

• Mutexes in Rubus OS uses the priority inheritance protocol [22] to avoid priority
inversion.

• A mutex is statically allocated.

Message Passing
Message passing allows threads to communicate via message FIFO queues. A message queue
handles messages of a fixed size. It has services for copying messages to and from the queue.
A message queue has no owner that means different threads can open, close and copy
messages to and from the queue.

4.1.5 The Blue Personality Services
The Blue Personality Services contains services for input output management. Services for the
management of I/O devices, file operations and simple and standardised interface to I/O
devices.

4.2 Some differences between OSEK/VDX OS and Rubus OS

4.2.1 Scheduling
OSEK/VDX
OSEK/VDX uses dynamic scheduling of tasks. All tasks are assigned a fixed priority at
system generation where zero is the lowest and every number higher than zero describes a
higher priority.

Rubus
Rubus OS have two types of threads. They have red threads and blue threads.
The red threads are time periodic threads and use static scheduling.
The blue threads are scheduled dynamically according to their priority. All red threads have
the same priority, a priority that is higher than the priority of all blue threads.

4.2.2 Periodic activities
OSEK/VDX
Time periodic activities are handled by the use of counters and alarms. A counter is set up. An
alarm is connected to the counter and the activation interval has to be decided. Each time the
alarm activates it can start a task, send an event to a task or start the alarm-callbackroutine.

Rubus
Time periodic threads are preferably defined as Red threads. All Red threads are time periodic
and are scheduled statically. This makes the execution of critical time periodic threads fast
and reliable.

 33

4.2.3 Resource management
OSEK/VDX
OSEK/VDX uses the OSEK priority ceiling protocol to avoid priority inversion and
deadlocks. All resources are configured off-line and all tasks that may want to use the
resource have to be connected to the resource during configuration. All resources are
statically assigned a ceiling priority at system generation.
 When a task wants to acquire a resource it has to use the operating system call
getResource and when it’s done with the resource it has to make the system call
releaseResource to release it.

Rubus
Rubus uses the priority inheritance protocol to avoid priority inversion. For most systems the
priority inheritance protocol has better overall performance than the priority ceiling protocol
but the worst case performance is usually better with the priority ceiling protocol.
 Rubus uses binary semaphores to encapsulate critical code sections. It is up to the
developer to avoid deadlocks.

4.2.4 Application modes
OSEK/VDX
OSEK/VDX supports the use of application modes. Different application modes may run
completely independent applications. It is not allowed to change application mode at runtime.

Rubus
A number of Red threads are grouped into a Red schedule. Each Red schedule represents an
application or an application mode. The application mode can be switched during runtime by
an operating system call.

 34

5 Conversion from Rubus OS to OSEK/VDX
Due to the differences between Rubus OS and the OSEK/VDX specifications there is some
work to be done when changing the application from using Rubus OS to an operating system
that is implemented according to the OSEK/VDX specification.
 Since Rubus OS and OSEK/VDX use different scheduling policies the scheduling has to
be considered if an application shall be adapted from using Rubus OS to OSEK/VDX. One
way to do this is to translate the schedule in Rubus OS to the use of timers and alarms in
OSEK/VDX using the rate monotonic scheduling policy [22].
 Also the resource management has to be considered, as the resource management does
not work the same way. The solution is straightforward. A segment in the code protected by
semaphores will instead be set up as a resource in OSEK/VDX.
 Rubus OS does have the advantage that it is possible to change application mode at
runtime. There is no standard solution to this in OSEK/VDX.
 All Rubus OS operating system calls that are used in Haldex Traction’s application have
to be translated and mapped to OSEK/VDX operating system calls.

5.1 Changes in the scheduling
Rubus OS supports both static and dynamic scheduling while OSEK/VDX only supports
dynamic scheduling. In the slip coupling application all threads, except for two low priority
threads, are Rubus Red threads, which means that they are time periodic and scheduled
statically.
 Since there only exists one semaphore in the entire application and the part of the code
that uses the semaphore is only called from threads with the same priority it means that there
will be no changes in the priorities even though the OSEK Priority Ceiling Protocol is used.
 This means that Haldex Traction’s present schedule in Rubus OS can be translated to
OSEK/VDX using timers and alarms according to rate monotonic scheduling. With the help
of alarms and timers in OSEK/VDX it is possible to obtain the same behaviour as with Rubus
OS with the difference that the scheduling will take more time than before because of the
change from dynamic to static scheduling. This extra time needed is very small compared to
the execution time of the application and should not affect the behaviour.
 In Rubus OS the Red (static) threads have the highest priority. In Haldex Traction’s
application there are three groups of Red threads. One group that starts every second ms and
have to be finished within two ms. The other two groups starts every fifth ms and have to be
finished within five ms.

 The schedule will be translated according to the following design plan:

• The first group of Red threads that have the shortest period will be given the highest
priority in the system and will be set to non-preemptive. All threads in this group will
be converted to one thread to minimise the loss of time caused by task switching. A
timer and a cyclic alarm will be connected to the thread to achieve the cyclic time
period of two ms.

• There are two groups of Red threads with a period of 5 ms and they will be given the
second highest priority in the system. These groups have to be preemptive because

 35

they will execute in the leftover time between the executions of the group with two ms
period time.

• Depending on the project there are three or more Blue (dynamic) Rubus threads in
Haldex Traction’s application. These threads have the same priority, which means that
they have the lowest priority in the system since all Blue threads have lower priority
than Red threads.
 The priority and scheduling of these threads will not change. All Blue threads will
be given the same priority also in the new operating system. They will continue to be
scheduled dynamically, preemptively and with the lowest priority in the system.

5.2 Changes in the resource management
When using binary semaphores to protect critical sections in the code the semaphore has to be
locked when entering the critical section and unlocked when leaving the section. When the
semaphore is locked, if another thread tries to lock the semaphore it has to wait until the
thread that first locked the semaphore unlocks it. Because of this only one thread at a time can
execute the critical section.
 With an OSEK/VDX realtime operating system all critical code sections have to be set
up before generating the system. At runtime when a thread wants to enter a critical section it
has to make the operating system call getResource. If another thread also tries to enter the
same critical section it will be blocked until the first thread makes the operating system call
releaseResource.
 The things that have to be done concerning resource management when changing the
application from Rubus OS to OSEK/VDX are first of all to find all resources in the code that
are protected by semaphores and define all the found resources as resources in the OIL-
configurator. The next thing to do is to change all the calls that lock a semaphore with calls to
getResource and all the calls that unlock a semaphore with calls to releaseResource, with the
correct resource as a parameter.

5.3 Different application modes
In Rubus OS there is a possibility to have different application modes. This opportunity is
used in Haldex Tractions application. They have for example one init mode at start up, one
operating mode for normal execution and one safety mode if things go wrong.
 A certain Red Schedule defines an application mode in Rubus OS. Different application
modes have different Red Schedules. A Red Schedule is a set of tasks that are scheduled
statically. This means that different application modes may have different tasks and therefore
completely different behaviour. Haldex uses different application modes but the differences
between the modes are not very large. Except for in the init mode there are just one or two
tasks that separate the different application modes.
 In an OSEK operating system one has the possibility to run a start up hook as the first
thing after the operating system has been started. This works like the init schedule Haldex
uses after Rubus OS has started so there is no need to do anything but look which tasks are
currently placed in the init schedule and place them in the start up hook.
 As the differences between the application modes in Haldex Traction’s application are
very small it is still possible to have them when using an OSEK/VDX operating system.

 36

OSEK/VDX also supports different application modes but it is not possible to change mode
during runtime, as is presently done with Rubus OS. This means that the application mode
functionality has to be constructed.

In Haldex Traction’s application, when changing to OSEK/VDX, there are at least two
different ways to create different application modes. One way is to simply have a global
variable that keeps track of the present application mode. Every time the application mode
needs to be changed this is done by changing the value of the global application mode
variable. The parts that differ in the different modes just have to check the application mode
variable to know what to do.

Another solution is to have a message box linked to all tasks. This will work in exactly
the same way as the global variable does. If a task wants to change the mode it sends a
message with the new mode to the common message box and before an application mode
dependent task start its execution it has to check the message box.

One advantage with the global variable is that this solution probably is faster. No
operating system call is needed in this solution but an ordinary global variable has to be
checked. On the other hand global variables are normally avoided so at this point of view the
message box solution may be preferable.

5.4 Translation of the operating system calls
All Rubus OS operating system calls that are used in Haldex Traction’s application need to be
mapped to OSEK/VDX. For some Rubus operating system calls there is a similar operating
system call in OSEK/VDX. In this case the only thing that has to be done is a change to the
name of the OS call in OSEK/VDX.
 Many OS calls in Rubus do not have a matching OS call in OSEK/VDX. These OS calls
are a bit more complicated to map. The OS calls in OSEK/VDX, C-functions and assembly
commands have to be used to make the application behave in the same way it did when
calling the original Rubus OS call.

The following Rubus OS operating system calls are the ones that are used in Haldex
Traction’s application. Below is a design suggestion of how to translate each one of these OS
calls:

blueFind:
The threads are always reached by name. Therefore this function is not needed in an
OSEK/VDX operating system.

blueIntrSend:
This Rubus OS call sends an event to a task. If the task that receives the event was waiting for
an event it becomes ready to execute. The OSEK OS call SetEvent does the same thing.

blueMutexFind:
This is used to find a Mutex specified by name. In OSEK resources are used instead of Mutex
and it is always possible to reach a resource directly by name.

blueMutexInit:
OSEK does not use Mutex, but resources are instantiated in the OIL-configurator.

 37

blueMutexTimedLock:
This OS call tries to lock a Mutex. If the Mutex is already locked it waits for the time interval
specified by the in parameter timeout for another thread to unlock the Mutex. In OSEK/VDX
resources are used instead of Mutexes. The OSEK OS call GetResource locks a resource but
there is no possibility to set a timeout because of the OSEK Priority Ceiling Protocol
(Immediate Inheritance Protocol) that OSEK OS uses. This protocol makes that a task never
has to wait to lock a resource.

blueMutexUnlock:
The Mutex is unlocked and if other threads are waiting for the Mutex the scheduling policy is
used to determine which thread shall acquire the Mutex. The same thing happens when using
the OSEK OS call releaseResource.

blueName:
The threads are always reached by name and therefore this function is not needed in an
OSEK/VDX operating system.

bluePreemptionLock:
This Rubus OS call makes that the calling thread cannot be pre-empted.
It is possible to disable all interrupts in an OSEK OS with the call DisableInterrupt. Before
this is done it is important to use the call GetInterruptDescriptor to be able to save the current
state of interrupts. The result of disabling all the interrupts is that the executing task or
interrupt service routine cannot be pre-empted.

bluePreemptionUnlock:
If all interrupts were disabled to achieve the Rubus OS call bluePreemptionLock then pre-
emption is enabled by enabling all the interrupts with the OSEK OS call EnableInterrupt.

blueSigEmptySet:
Clears the pending signals for a specific thread. A pending signal is a signal that has been sent
but not yet received by another thread. Signals are used to send events.
 In OSEK OS there is an OS call ClearEvent but the difference between Rubus OS and
OSEK OS is that ClearEvent can only remove the pending events that the calling task owns.

blueSigSend:
This Rubus OS call sends a signal to a specific thread and if this thread was waiting for the
signal, the thread is unblocked. The OSEK OS call SetEvent does the same thing.

blueSigTimedWait:
This function makes the blue thread wait the time timeout for the set of signals defined by set.
It only waits if there is no signal pending at the time of the call.
 There is an OSEK OS call WaitEvent that works the same way. The waiting thread is in
the waiting state until at least one of the events specified has been set. The difference is that it
is not possible to define a timeout in WaitEvent in OSEK OS.

blueSleep:
The blueSleep call causes the calling thread to be suspended for a specified amount of time.
 There is no sleep function in OSEK OS.

 38

blueStart:
Since there are no red or blue threads in OSEK OS there is no need for a blueStart call. The
OSEK OS call StartOS starts the entire realtime operating system.

bsInit:
This Rubus OS call is used to initialise the Basic Services. This call does not need to be
replaced with anything because an OSEK OS does not initialise through an operating system
call.

bsLogPut:
This function puts a log object in a log queue. There does not exist a corresponding call in
OSEK OS.

bsQueueGet:
This Rubus OS call takes the oldest message from a queue. The same functionality exists in
OSEK COM. It is possible to have m-to-n communication with the unread messages stored in
a FIFO queue. The OSEK COM call to get a message from a message queue is
ReceiveMessage.

bsQueueInit:
This Rubus OS call is used to initiate a queue in Rubus. It is a FIFO queue that all tasks and
interrupt service routines are able to write to and read from.
 In OSEK the OSEK COM has to be started with the call StartCOM. The message queue
and which tasks and interrupt service routines that are allowed to write to and read from the
queue has to be configured statically before system generation in the OIL-file.

bsQueuePut:
This call puts a message into the message queue. The corresponding call in OSEK COM is
SendMessage.

bsStatus:
bsStatus is used to check if the running thread is a Rubus Red or a Rubus Blue thread and to
check the preemption status.

If it is important for the application’s functionality to know if the task running is a former
Rubus Red or Rubus Blue thread it is possible to solve this with a global status variable. The
first thing every task has to do is to read and save the old status in a local variable and set the
global status variable to the status of the task. When a task has finished its execution it uses
the local status variable to change the global status variable back. This has to be done to
support pre-emption.

The pre-emption status check can be solved in the same way.

bsTvToJiffies:
This OS call is used to calculate the number of timer ticks in a time interval.
The OSEK OS call GetAlarmBase returns among other things the number of processor ticks
needed to increase the system counter. If this is known and the frequency of the CPU is
known then it is possible to calculate the number of timer ticks in a time interval.

halBlueIntrContext:
This Rubus OS function is used to enter an interrupt service routine. There is no
corresponding OS call in an OSEK OS. A call to the desired function is possible to perform.

 39

redGetAllThreads:
This Rubus OS call returns the next Red thread that is going to execute. This is impossible in
OSEK OS because OSEK OS uses dynamic scheduling. The dynamic scheduling means that
which task is going to execute next is decided at runtime just before the new task starts.

redInit:
This is used to initiate the Red Kernel. This is not needed in OSEK/VDX.

redMaxTimeGet:
This Rubus OS call returns the longest execution time registered for the task. There is no
similar call in OSEK but it should not be hard to implement it. Read the system clock in the
pre task hook and store the value in a temporary variable. Read the system clock again in the
post task hook, calculate the execution time and if it is longer than the earlier stored execution
time value, store this value instead. The longest execution time is stored in the execution time
variable.

redSetSchedule:
This function is used to choose the appropriate red schedule. In OSEK/VDX it is not possible
to change execution state while running but it is possible to make an implementation that
solves this problem according to the solution in Chapter 5.3.

 40

6 Test application

6.1 Introduction
Haldex Traction’s application is mostly made up of Rubus Red threads. These threads are
statically scheduled and time periodic. An important thing for Haldex Traction to ensure when
changing realtime operating system from Rubus OS to an OSEK OS is that the time-periodic
activities work as they do today.

Time periodic activities in OSEK OS are solved with the help of alarms and timers. With
a cyclic alarm connected to a timer it is possible to set a time-periodic event. With the event it
is possible to activate a task.
 Rubus OS uses static scheduling and this is not possible in OSEK OS. Haldex Traction’s
application only contains one protected resource and this resource is only called from threads
with the same priority so there will be no changes in priorities because of resources. If the
tasks are given the correct priorities they will execute in the desired order. The only difference
that will be noticed between Rubus OS and OSEK OS in Haldex Traction’s application is that
the scheduling that is performed at runtime in OSEK will take a small amount of time, but this
time is so small that it will not affect the functionality of the application.

6.2 The test hardware and OSEK OS
Haldex Traction is currently using the micro-control unit Infineon C167cs. For the next
generation of the control unit, generation 3, they have changed the micro control unit from
C167cs to ST10F272 from ST Micro Electronics. If Haldex Traction decides to change to an
OSEK realtime operating system, this will not be introduced in an earlier generation than
generation 3.
 For the test application there were several advantages to test OSEK OS with Haldex
Traction’s present micro-control unit Infineon C167cs. The first advantage is that most of the
distributors of OSEK OS already have a configuration for this micro-control unit on the shelf.
If the ST10F272 should be used, most of the OSEK distributors would have to do some
configurations and tests to make it work and this both takes time and costs money.
 Secondly, the staff at the TTE division at Haldex Traction are experts on the C167cs
micro-control unit.
 The last reason for using the C167cs for the test application is that Haldex Traction has
more available debuggers for this processor.

 The OSEK realtime operating system that was used in the test application is Vector
Informatics OSEK implementation osCAN. This is presently the best suited OSEK realtime
operating system for Haldex Traction.

6.3 The test application
The test application should be as simple as possible but still test the use of time-periodic
activities in an OSEK OS. Haldex Traction’s limited slip coupling uses a small electrical
pump controlled by the control software. This pump is used to obtain a base pressure of the

 41

oil in the coupling. The good thing about the pump is that it is easy to control and it is
possible to verify the functionality of the pump just by listening to the sound from it.
 The test application consists of one time-periodic thread that first increases the duty cycle
of the pump from zero to one thousand and then decreases the duty cycle form one thousand
back to zero and then starts from the beginning. The duty cycle is changed in steps of one
every second millisecond. The duty cycle determines the speed of the pump where zero is no
pump activity and one thousand is maximum speed.
 This small test application that makes calls to Haldex Traction’s code to steer the pump is
a short and simple C-application. osCAN was configured to have one time periodic thread that
starts every second millisecond in the OIL-configurator, which was included with the realtime
operating system. The configurations needed in the OIL-configurator were very fast and
simple.

 A Red Rubus schedule consisting of one thread, the test thread, was configured to start
every second millisecond to be able to test the test application with the old realtime operating
system before changing to a new one. The application worked as expected and there were no
problems.

 The software architecture of the test application is illustrated in Figure 6-1 below.

ECU Hardware

Parts of base software
(Hardware Adaption Layer)

Test application
Realtime operating

system
(Rubus OS or osCAN)

Hardware dependent
drivers and protocol
managers

data flow

Figure 6-1 Software architecture of the test application

• Test application: The test application contains the test function that
increases or decreases the duty cycle of the pump at each call.

• Realtime operating system: The test application is tested both with Rubus OS and
with the OSEK OS osCAN. In the test application the realtime operating system is
used to perform the scheduling.

• Parts of the base software: Parts of Haldex Traction’s base software is used to be
able to control the pump. The necessary initialisation methods are used as well as the
methods to steer the pump.

 42

6.4 Two different approaches
Haldex Traction already has a well working application that uses Rubus OS as its realtime
operating system. When integrating this large already well-working application with a new
realtime operating system there is another problem except for the functional differences
between the two realtime operating systems. The memories in the processor, C167cs, are set
up differently in Haldex Traction’s application compared with how it is set up in osCAN. The
interrupt vector table is also generated in different ways in the two systems. Haldex Traction’s
application and osCAN use completely different compiler and linker flags and the structure of
Haldex Traction’s makefiles compared with osCAN’s makefiles are organized completely
different.

 There are two different approaches when integrating the two systems. One approach is to
use Haldex Traction’s makefiles, do everything in the same way as they do today and just
replace Rubus OS with osCAN.
 The second approach is to use the makefiles included with the osCAN product, use the
way Vector Informatic sets up the system and just add Haldex Traction’s application.
 Both the approaches where tested in this master thesis.

 The exact same test application was used in both approaches and with the same OIL-file
made with the help of the OIL-configurator that was included with osCAN.

6.4.1 Using Haldex Traction’s makefiles
This approach was tried as a first attempt to minimise the work of converting the system to
work with OSEK OS. The work of replacing Rubus OS with OSEK OS was done in the
following steps:
 The first thing done was to compile the OSEK OS files and the test application in Haldex
Traction’s makefiles. There were no major problems with this. The second thing was to
remove all Rubus OS calls in the parts of Haldex Traction’s code that was not used by the test
application. The part of Haldex Traction’s code that is used to steer the pump does not contain
any Rubus OS calls, so no translation of OS calls had to be done in the test application. Also
the start up procedure in Haldex Traction’s application which initiates everything and
eventually starts Rubus OS, had to be replaced with a new start up procedure that initiates the
things necessary to control the pump and starts osCAN instead of Rubus OS. When the Rubus
OS calls were removed from the code it was possible to remove Rubus OS from the linking
and compilation in Haldex Traction’s makefiles. Also this went well.
 The next and last thing to do was to include osCAN in the linking procedure in Haldex
Traction’s makefiles. This is when the problems started. The processor’s memory was
configured differently in the two systems so this had to be changed in osCAN which
succeeded after a while. The real problems had to do with the interrupt vector table that is
needed to start the realtime operating system. osCAN needs the linker flag NOVT (no vector
table) to work but if this linker flag is introduced in Haldex Traction’s make and linker
structure it does not work. After trying to get around this for about four weeks without
succeeding the next approach was tested instead.

 43

6.4.2 Using osCAN’s makefiles
If starting with the correct OIL-configuration but with the single thread empty it is no problem
to compile and link osCAN and the empty application with the make structure included with
osCAN.
 When this was done the code from Haldex Traction’s application necessary to control the
pump was compiled with osCAN in osCAN’s makefiles. Next step was to add the necessary
initialisation of Haldex Traction’s pump control software in the osCAN StartUPHook which
is executed right after the operating system has started but before the scheduler has started. A
call to the test application was added in the empty body of the time periodic task. This was
easily done and when it did compile and link the format of the output-file was changed in the
makefiles to the *.sre format that is used in the processor C167cs.

 The test application behaved in the desired way with the pump spinning up and down
with a period of four seconds.

 To convert Haldex Traction’s entire application, continue with this approach and port one
module or task at a time. Use the design suggestions in chapter 5 to make it work.

 44

Summary
OSEK/VDX is an industry standard developed as a joint project by the German and the
French automotive industry. The goal is to minimise the expenses caused by recurring non-
application related work and to reduce incompability between control units made by different
distributors caused by the use of different interfaces and protocols.
 The main goal behind the OSEK/VDX standard is very good. The negative aspects of the
project is if companies, like for example Haldex Traction, is forced to change their good
working application not because they need the standard but because they are forced by
customers. Haldex Traction’s realtime operating system Rubus OS uses static scheduling,
which is faster and safer than dynamic scheduling but OSEK/VDX does not have a good
answer to this yet. OSEKtime which uses static scheduling exists but has not been fully
accepted by the realtime operating system distributors.

 There are some different alternatives on the market when looking for an OSEK/VDX
realtime operating system. The API of the realtime operating systems is specified by
OSEK/VDX so the main differences are in how many and how much of the OSEK/VDX
documents that are implemented, the price and the performance (amount of memory required
and response times). The OSEK/VDX realtime operating system best suited for a specific
company depends on that company’s demands from the realtime operating system. The
OSEK/VDX realtime operating system found to be best suited for Haldex Traction and their
application is Vector Informatic’s realtime operating system osCAN.

 There are many differences between Rubus OS and osCAN that are described in this
report. It should not be any problem to make Haldex Traction’s application work like it does
today with an OSEK OS instead of Rubus OS. If the design suggestions in this report are
followed the work of changing realtime operating system should not be very large. A rough
estimation is that this work will take one year for one person including testing or better one
half calendar year for two persons.

 45

References

[1] What is OSEK/VDX? http://www.osek-vdx.org/whats_osekvdx.html 2004-08-25

[2] OSEK (2004): OSEK/VDX Operating System Version 2.2.2

[3] OSEK (2004): OSEK/VDX Communication Version 3.0.3

[4] OSEK (2004): OSEK/VDX Network Management Version 2.5.3

[5] OSEK (2004): OSEK/VDX OSEK Implementation Language Version 2.5

[6] OSEK (2001): OSEK/VDX Time-Triggered Operating System Version 1.0

[7] EUROSmot http://www.euros-embedded.com/e/osek.htm 2004-08-25

[8] ERCOSEK http://www.spacetools.com/tools4/space/404.htm 2004-08-25

[9] Metrowerks OSEKturbo
http://www.metrowerks.com/MW/Develop/Embedded/OSEK.htm 2004-08-25

[10] RTA Software Products http://en.etasgroup.com/catalog/pdf_04/3_6.pdf 2004-08-25

[11] 3SOFT http://www.dreisoft.de/index_e.htm 2004-08-25

[12] Nucleus RTOS http://www.acceleratedtechnology.com/embedded/osek.php 2004-08-25

[13] OSEK Compliant Technology http://www.trialog.com/RealTimeAuto/osek.html 2004-
08-25

[14] VECTOR INFORMATIK http://www.realtime-os.info/index.html??osekvdx.html 2004-
08-25

[15] Haldex http://www.haldex.com 2004-08-25

[16] Haldex Traction http://www.haldex-traction.com 2004-08-25

[17] RTOS Partners http://www.hitex.com/pa4prod.html 2004-08-25

[18] Embedded Controller Hardware and Operating System Selection for MoBIES Powertrain
Testbed
http://vehicle.me.berkeley.edu/mobies/powertrain/reports/Controller_Hardware_and_Operatin
g_System.doc 2004-08-25

[19] Embedded Real-Time Operating System (RTOS) Vendors
http://www.dspconsulting.com/rtos.html 2004-08-25

[20] Personal contact information.

 46

[21] OSEK (2001): OSEKtime FTCom specification

[22] Årzén K. (2003): Real-Time Control Systems

[23] Arcticus Systems (1999): Rubus OS Reference Manual 2.0

