
HP OpenVMS Version 8.2 New
Features and Documentation
Overview
Order Number: BA322-90003

January 2005

This manual describes the new features associated with the OpenVMS
Alpha and I64 Version 8.2 operating systems and provides an overview
of the documentation that supports this software.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S registered trademark of Linus Torvalds.

Macintosh is a registered trademark of Apple Corporation.

Microsoft and Windows are trademarks of Microsoft Corporation in the U.S. and/or other countries.

UNIX is a registered trademark of the Open Group.

Printed in the US

ZK6675

The HP OpenVMS documentation set is available on CD.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . ix

Part I OpenVMS Version 8.2 New Features

1 Summary of HP OpenVMS Version 8.2 New Features

1.1 Summary Table . 1–1
1.2 Major Differences Between OpenVMS Alpha and OpenVMS I64

Systems . 1–4

2 General User Features

2.1 DCL Commands and Lexical Functions . 2–1
2.2 License Management Facility Enhancements (LMF) 2–2
2.3 Monitor Utility Enhancements . 2–3
2.4 OpenVMS I64 Operating Environments (OEs) . 2–3

3 System Management Features

3.1 OpenVMS I64 Boot Manager (BOOT_OPTIONS.COM) Utility 3–1
3.2 Clustering on OpenVMS I64 Systems . 3–1
3.2.1 OpenVMS I64 Cluster Interconnect Support . 3–2
3.2.2 Mixed-Architecture Clusters . 3–3
3.2.2.1 Storage in a Mixed-Architecture Cluster . 3–4
3.3 EFI for OpenVMS Utilities . 3–5
3.4 HP Performance Data Collector (TDC) . 3–5
3.5 Ethernet LAN Drivers: Full-Duplex or Half-Duplex Mode Mismatch 3–6
3.5.1 Result of Duplex Mode Mismatch . 3–6
3.5.2 Detection and Correction of Duplex Mode Mismatch 3–7
3.6 Host-Based Adapter (HBA) Support . 3–7
3.6.1 Fibre Channel HBA Support on OpenVMS I64 and OpenVMS Alpha

Systems . 3–7
3.6.2 Ultra SCSI HBA Support on OpenVMS I64 Systems 3–8
3.7 System Analysis Tools Enhancements . 3–8
3.7.1 New and Enhanced SDA Commands . 3–8
3.7.2 System Service Logging . 3–9
3.8 System Parameters . 3–9
3.8.1 New System Parameters . 3–10
3.8.2 Changed System Parameters . 3–11
3.9 Additional Time Zones Added to Database . 3–12
3.10 Volume Shadowing for OpenVMS New Features . 3–12

iii

4 Programming Features

4.1 Analyze Utility Enhancements (I64 Only) . 4–1
4.2 OpenVMS Calling Standard Changes for OpenVMS I64 4–1
4.3 Checksum Utility . 4–1
4.3.1 CHECKSUM/OBJECT Enhanced for I64 Objects 4–2
4.4 C Run-Time Library Enhancements . 4–2
4.4.1 File-Locking Functions . 4–2
4.4.2 Standard-Compliant stat Structure . 4–2
4.4.3 File-System Statistics Support . 4–3
4.4.4 fcntl File Status Flags . 4–3
4.4.5 UNIX Style Pipe Support . 4–3
4.4.6 DECC$POPEN_NO_CRLF_REC_ATTR . 4–3
4.4.7 glob and globfree 64-Bit Support . 4–3
4.4.8 socketpair . 4–4
4.5 DCE RPC Now Supports IEEE Floating-Point Type 4–4
4.6 OpenVMS Debugger . 4–4
4.6.1 Intel® Itanium® Hardware Support . 4–4
4.6.2 OpenVMS I64 Language Support . 4–5
4.6.3 Heap Analyzer Available on OpenVMS I64 Systems 4–5
4.7 Extended Lock Value Block . 4–5
4.8 Librarian Utility and Library Routines (I64 only) 4–5
4.8.1 Librarian Usage Summary . 4–6
4.8.2 Changes to the Librarian Utility . 4–6
4.8.2.1 Librarian Defaults to Intel® Itanium® Architecture 4–6
4.8.2.2 No Support for /ALPHA and /VAX Qualifiers 4–7
4.8.2.3 Enhanced /REMOVE Qualifier . 4–7
4.8.3 Changes to the Library (LBR) Routines . 4–7
4.8.3.1 New Library Types Added . 4–7
4.8.3.2 Accessing ELF Object Libraries . 4–8
4.8.4 New Librarian (LBR) Routines for ELF Object Libraries 4–9

LBR$LOOKUP_TYPE . 4–10
LBR$MAP_MODULE . 4–12
LBR$PUT_MODULE . 4–13
LBR$UNMAP_MODULE . 4–14

4.8.5 Extended Library (LBR) Routines for ELF Object Libraries 4–15
LBR$DELETE_DATA . 4–16
LBR$DELETE_KEY . 4–18
LBR$GET_INDEX . 4–20
LBR$INSERT_KEY . 4–23
LBR$LOOKUP_KEY . 4–25
LBR$PUT_RECORD . 4–27
LBR$REPLACE_KEY . 4–29
LBR$SEARCH . 4–31

4.8.6 Library Format Changed due to New UNIX-Style Weak Symbols 4–34
4.8.6.1 New ELF Type for Weak Symbols . 4–34
4.8.6.2 Version 6.0 Library Index Format . 4–34
4.8.6.3 New Group Section Symbols . 4–35
4.8.6.4 Precedence Ordering Rules . 4–35
4.9 Linker Utility . 4–35
4.10 HP OpenVMS Migration Software . 4–35
4.11 POSIX Threads Features . 4–36
4.11.1 Lowercase Symbol Names for /NAMES=AS_IS Compilation 4–36

iv

4.11.2 Support for Process-Shared Mutexes and Condition Variables 4–36
4.11.3 SET and SHOW Commands Enhanced (I64 Only) 4–36
4.11.4 New Routine Added to Thread Independent Services API 4–36

tis_mutex_init_type . 4–37
4.12 New RTL LIB Routines . 4–39
4.12.1 Change to LIB$GETDVI routine (I64 only) . 4–40
4.13 New RTL OTS Routines . 4–40
4.14 Patch Utility Now Available on OpenVMS Alpha and OpenVMS I64 4–41
4.15 New and Revised System Services . 4–41
4.16 Time Zone Information Compiler (zic) Updates . 4–44
4.17 Traceback Facility . 4–44
4.18 XDELTA New Features . 4–46

5 Associated Products Features

5.1 ATI RADEON 7500 Graphics . 5–1
5.2 Common Data Security Architecture (CDSA) Now Supports a New

Encryption Type . 5–1
5.3 Kerberos for OpenVMS . 5–2
5.4 HP SSL for OpenVMS . 5–3
5.5 HP TCP/IP Services for OpenVMS Version 5.5 . 5–5

6 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

6.1 HBMM Configuration Requirements . 6–1
6.2 HBMM Restrictions . 6–2
6.2.1 Cluster Configuration Restrictions . 6–2
6.2.2 Shadow Set Member Restrictions . 6–2
6.2.3 System Parameter Restrictions . 6–2
6.3 HBMM in a Mixed-Version or Mixed-Architecture OpenVMS Cluster

System . 6–2
6.4 Overview of Full Merge and Minimerge Operations 6–4
6.4.1 Merge Resulting from a System Failure . 6–4
6.4.2 Merge Resulting from Mount Verification Timeout 6–5
6.4.3 Merge Resulting from Use of SET SHADOW/DEMAND_MERGE 6–5
6.4.4 Comparison of Merge and Minimerge Operations 6–5
6.5 Overview of HBMM . 6–6
6.5.1 Bitmaps: Master and Local . 6–6
6.5.2 HBMM Policies . 6–7
6.6 HBMM Policy Specification Syntax . 6–7
6.7 Rules Governing HBMM Policies . 6–8
6.8 Guidelines for Establishing HBMM Policies . 6–10
6.8.1 Selecting the Systems to Host Master Bitmaps 6–11
6.8.2 Setting the Bitmap RESET_THRESHOLD Value 6–11
6.8.3 Using Multiple Policies . 6–12
6.9 Configuring and Managing HBMM . 6–13
6.9.1 How to Define an HBMM Policy . 6–13
6.9.2 How to Assign an HBMM Policy to a Shadow Set 6–13
6.9.3 How to Activate HBMM on a Shadow Set . 6–13
6.9.4 How to Disable HBMM on a Shadow Set . 6–14
6.9.5 How to Remove a Policy Association from a Shadow Set 6–14
6.9.6 How to Change a Policy Assignment of a Shadow Set 6–14
6.9.7 How to Delete a Named Policy from the Cluster 6–14
6.9.8 How to Apply a Changed DEFAULT Policy . 6–15

v

6.9.9 How to Display Policies . 6–15
6.9.10 How to Display the Merge Status of Shadow Sets 6–17
6.9.11 How to Prevent Merge Operations on a System 6–18
6.9.12 Considerations for Multiple-Site OpenVMS Cluster Systems 6–18
6.10 New System Parameters That Affect HBMM . 6–18
6.10.1 SHADOW_REC_DLY Parameter . 6–19
6.10.2 SHADOW_HBMM_RTC Parameter . 6–19
6.11 Use of /DEMAND_MERGE When HBMM Is Enabled 6–19
6.12 Prioritizing Merge and Copy Operations . 6–20
6.12.1 Default Management of Merge and Copy Operations 6–20
6.12.2 Hierarchy of Transient State Operations . 6–21
6.12.3 Assigning Priorities . 6–21
6.12.4 Displaying Priority Values . 6–22
6.12.5 Controlling Which Systems Manage Merge and Copy Operations 6–23
6.12.6 Managing Merge Operations . 6–23
6.12.7 Managing Copy Operations . 6–24
6.12.8 Managing Transient States in Progress . 6–25
6.13 Visible Impact of Transient State Events . 6–25

7 Linker Utility

7.1 Linker Utility New Features . 7–1
7.1.1 Differences When Linking on OpenVMS I64 Systems 7–2
7.1.1.1 Data Types of Symbols must Match on I64 7–2
7.1.1.2 Specifying Based Clusters Vary by OpenVMS Platform 7–4
7.1.1.3 Handling of Initialized Overlaid Program Sections on OpenVMS

I64 Systems . 7–4
7.1.1.4 Behavior Difference When Linking ELF Common Symbols 7–7
7.1.1.5 Flags Set When /TRACEBACK, /DEBUG, and /DSF are Used 7–8
7.1.2 New Aspects for Linking on OpenVMS I64 Systems 7–9
7.1.2.1 Understanding Linkage Messages . 7–10
7.1.2.2 Considerations for Images Compiled with Reduced Floating Point

Model . 7–12
7.1.2.3 Considerations for Linking with ELF Groups and UNIX-style

Weak Symbols . 7–12
7.1.3 New Linker Qualifiers for OpenVMS I64 . 7–13
7.1.3.1 New /BASE_ADDRESS Qualifier . 7–13
7.1.3.2 New /SEGMENT_ATTRIBUTE Qualifier . 7–14
7.1.3.3 New /FP_MODE Qualifier . 7–14
7.1.3.4 New Linker Qualifiers: /EXPORT_SYMBOL_VECTOR and

/PUBLISH_GLOBAL_SYMBOLS . 7–14
7.1.3.5 New GROUP_SECTIONS and SECTION_DETAILS keywords for

the /FULL Qualifier . 7–17
7.1.4 New Linker Options for OpenVMS I64 . 7–17
7.1.4.1 New Alignments for the PSECT_ATTRIBUTE Option 7–17
7.1.5 New Ways to Use Existing Linker Qualifiers and Options 7–17
7.1.5.1 Mixed-Case Arguments in Linker Options on I64 Systems 7–18
7.1.5.2 Conventions for Specifying Image Names 7–18
7.1.5.3 Using the PSECT_ATTRIBUTE Option to Specify Alignment 7–19
7.1.5.4 Special Linker Handling of Nonexistent Files 7–19
7.1.6 New OpenVMS I64 Linker Map . 7–21

vi

Part II OpenVMS Documentation

8 OpenVMS Documentation Overview

9 OpenVMS Printed and Online Documentation

9.1 Printed Documentation . 9–1
9.1.1 OpenVMS Media Kit Documentation . 9–2
9.1.2 OpenVMS Documentation Sets . 9–2
9.1.3 Operating Environments Extensions Documentation Set (I64

Only) . 9–4
9.1.4 Documentation for System Integrated Products 9–5
9.1.5 Archived OpenVMS Documentation . 9–5
9.2 Authoring Tool for OpenVMS Documentation . 9–5
9.3 Online Documentation on CD . 9–6
9.3.1 Online Formats . 9–6
9.3.2 PDF Reader . 9–6
9.4 Online Documentation on the OpenVMS Web Site 9–6
9.5 Online Help . 9–6

10 Descriptions of OpenVMS Manuals

10.1 Manuals in the OpenVMS Media Kit . 10–1
10.2 Manuals in the OpenVMS Base Documentation Set 10–2
10.3 Additional Manuals in the OpenVMS Full Documentation Set 10–3
10.4 RMS Journaling Manual . 10–7
10.5 Manuals in the OpenVMS I64 OE Extensions Kit 10–8
10.6 Archived Manuals . 10–9

Index

Examples

7–1 Linker Map Showing Program Section Synopsis 7–6

Figures

3–1 OpenVMS Cluster Systems with Alpha and I64 Systems 3–3
3–2 Storage in Mixed-Architecture OpenVMS Cluster 3–4
7–1 Object and Image Synopsis and Cluster Synopsis 7–22
7–2 Image Segment Synopsis . 7–23
7–3 Program Section Synopsis . 7–24
7–4 Program Section Synopsis (Continued) . 7–25
7–5 Symbol Cross Reference . 7–26
7–6 Symbols by Value . 7–27
7–7 Image Synopsis . 7–28
7–8 Link Run Statistics . 7–29

vii

Tables

1–1 Summary of OpenVMS Version 8.2 Software Features 1–1
2–1 Updates to DCL Commands and DCL Documentation 2–1
2–2 Updates to DCL Lexicals and Lexicals Documentation 2–2
4–1 Libraries Created by OpenVMS Platforms . 4–6
4–2 RTL LIB Routines . 4–39
4–3 RTL OTS Routines . 4–40
4–4 New System Services . 4–41
4–5 Revised System Services . 4–42
6–1 Visible Impact of Transient State Events . 6–26
8–1 Documentation Set Changes for OpenVMS Version 8.2 8–1
9–1 OpenVMS Media Kit Manuals . 9–2
9–2 OpenVMS Full Documentation Set (QA-001AA-GZ.8.2/BA554MN) . . . 9–3
9–3 System Integrated Products Documentation . 9–5
10–1 Archived OpenVMS Manuals . 10–9
10–2 Archived Networking Manuals and Installation Supplements 10–10

viii

Preface

Intended Audience
This manual is intended for general users, system managers, and programmers
who use the HP OpenVMS operating system.

This document describes the new features related to Version 8.2 of the OpenVMS
operating system. For information about how some of the new features might
affect your system, read the release notes before you install, upgrade, or use
Version 8.2.

Document Structure
This manual contains the following parts and chapters:

• Part I, OpenVMS Version 8.2 New Features

Chapter 1 summarizes the new OpenVMS software features.

Chapter 2 describes new features of interest to general users of the
OpenVMS operating system.

Chapter 3 describes new features that are applicable to the tasks
performed by system managers.

Chapter 4 describes new features that support programming tasks.

Chapter 5 describes significant layered product new features.

Chapter 6 provides information on Host-Based Minimerge in Volume
Shadowing for OpenVMS.

Chapter 7 provides an overview of new linker functionality in OpenVMS
Version 8.2 as well as differences and considerations you should review
before linking programs on OpenVMS I64 systems.

• Part II, OpenVMS Documentation

Chapter 8 describes the OpenVMS documentation changes from the
previous version.

Chapter 9 describes how the documentation is delivered.

Chapter 10 describes each manual in the OpenVMS documentation set.

Related Documents
For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

ix

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

x

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xi

Part I
OpenVMS Version 8.2 New Features

1
Summary of HP OpenVMS Version 8.2 New

Features

OpenVMS Version 8.2 introduces a major new platform release for the OpenVMS
operating system, HP Integrity servers. OpenVMS continues to deliver the
highest levels of availability, scalability, flexibility, performance, and security
that are required for operating in a 24x365 environment. With more than 20
years of proven reliability, OpenVMS continues to enhance its availability and
performance by including new technology in the base operating system and in the
OpenVMS Cluster software environment.

1.1 Summary Table
OpenVMS Version 8.2 includes all the capabilities of OpenVMS Version 7.3–2
plus the new features added to the OpenVMS operating system. Table 1–1
summarizes each feature provided by OpenVMS Version 8.2 and presents
these features according to their functional component (general user, system
management, programming, and associated products).

Table 1–1 Summary of OpenVMS Version 8.2 Software Features

General User Features

Documentation Documentation updates are now available on the Internet.

One new manual is provided with this release, Porting Applications
from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64 for
Integrity Servers.

Documentation for OpenVMS Volume Shadowing support for Host-
Based Minimerge (HBMM) is provided in Chapter 6. Documentation for
the Linker utility new features is provided in Chapter 7.

DCL commands and lexical
functions

Version 8.2 provides new and changed DCL commands, qualifiers, and
lexical functions.

EV7 chip speedup Support for new EV7 chip speedup for AlphaServer ES47, ES80, and
GS1280 systems.

LMF enhancements Added support for Integrity server OE packages and per-processor
licensing on I64 systems.

Monitor utility enhancements Several enhancements were made to the Monitor utility during the port.

Operating Environments OpenVMS I64 is provided in three different operating environments:
Foundation Operating Environment (FOE), Enterprise Operating
Environment (EOE), and Mission Critical Operating Environment
(MCOE).

(continued on next page)

Summary of HP OpenVMS Version 8.2 New Features 1–1

Summary of HP OpenVMS Version 8.2 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.2 Software Features

System Management Features

Clusters With few exceptions, OpenVMS Cluster software provides the same
features on OpenVMS I64 systems as it currently offers on OpenVMS
Alpha and VAX systems.

The Performance Data Collector
(TDC)

Gathers performance data for systems running OpenVMS Version 7.3–2
or later.

OpenVMS I64 Boot Manager
utility

A menu-based utility that allows you to easily manage EFI boot options
on an Integrity server running OpenVMS I64.

EFI for OpenVMS Utilities Utilities that provide device management functions at the EFI console
on I64 systems.

Fibre Channel HBA support Two new Fibre Channel host-based adapters (HBAs) are supported
in OpenVMS Version 8.2, one for OpenVMS I64 systems and one for
OpenVMS Alpha systems.

Host-Based Minimerge (HBMM) HBMM improves merge operations by decreasing the number of
comparisons that are needed to complete a merge operation.

System Dump Analyzer New commands and qualifiers have been added and changes have been
made to the System Dump Analyzer. Some changes are to accommodate
I64 systems.

Prioritizing the merge and copy
operations of volume shadowing

You can now prioritize shadow sets for merge and copy operations on
a per-system basis, using two new SET SHADOW command qualifiers
and a new system parameter. In addition, you can manipulate where a
merge or copy operation will occur.

New system parameters — ERLBUFFERPAG_S2 specifies the amount of S2 space memory to
allocate for each S2 space error log buffer.
— ERRORLOGBUFF_S2 specifies the number of S2 space error log
buffers reserved for system error log entries.
— SCSI_ERROR_POLL causes OpenVMS to send a SCSI Test Unit
Ready command every hour to each SCSI disk.
— SHADOW_ENABLE is a special parameter reserved for HP use.
— SHADOW_HBMM_RTC controls the interval the system waits
between the checking of reset thresholds for shadow sets that have
Host-Based Minimerge (HBMM) bitmaps.
— SHADOW_PSM_DLY allows system managers to adjust the delay
that shadowing adds.
— SHADOW_REC_DLY helps determine the length of time a system
waits before it attempts to manage recovery operations on shadow sets.
— SHADOW_SITE_ID allows a system manager to define a site value,
which Volume Shadowing uses to determine the best device to perform
reads.
— SYSSER_LOGGING enables logging of system service requests for a
process.
— VHPT_SIZE controls the number of kilobytes to allocate for the
Virtual Hash Page Table (VHPT) on each CPU in the system.

Time zones Additional time zones are now supported by adding them to the
database.

Ultra SCSI adapter support on
OpenVMS I64

OpenVMS I64 supports two Ultra-SCSI host based adapters (HBAs):
the Ultra-160 dual channel and the Ultra-320 dual channel.

Programming Features

ANALYZE utility enhancement
(I64 only)

Analyzes Executable and Linkable Format (ELF) object and image files.

(continued on next page)

1–2 Summary of HP OpenVMS Version 8.2 New Features

Summary of HP OpenVMS Version 8.2 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.2 Software Features

Programming Features

HP C Run-Time Library (CRTL)
enhancements

— File-locking functions
— Standard-compliant stat structure
— File-system statistics support
— fnctl file status flags
— UNIX style pipe support
— New logical name, DECC$POPEN_NO_CRLF_REC_ATTR
— glob and globfree 64-bit support
— Socketpair
— stat function enhancements

Calling Standard Supports the Intel Itanium calling standard on OpenVMS I64 systems,
with some exceptions.

Checksum utility CHECKSUM/OBJECT command enhanced for I64 objects.

DCE RPC Supports both G_FLOAT and IEEE floating-point type on both
OpenVMS Alpha and OpenVMS I64 systems.

Extended Lock Value Block Adds support for 64-byte lock value blocks in the OpenVMS Lock
Manager. Existing applications will continue to use a 16-byte value
block. Usage of the extended value block requires source changes.

HP OpenVMS Migration
Software

Converts Alpha executable images or shareable images into a translated
image that runs on an OpenVMS I64 system.

New RTL LIB$ routines See Section 4.12 for routines and their descriptions.

New RTL OTS$ routines See Section 4.13 for routines and their descriptions.

Patch utility Patch utility is now available on OpenVMS Alpha and OpenVMS I64
systems.

POSIX threads features – Process-shared mutexes and condition variables
– Enhancements to SET and sHOW commands (I64 only)
– New routine, tis_mutex_init_type, added to thread independent
services

New system services — $CLEAR_UNWIND_TABLE
— $GET_UNWIND_ENTRY_INFO
— $GOTO_UNWIND_64
— $IEEE_SET_ROUNDING_MODE
— $IEEE-SET PRECISION_MODE
— $RPCC_64
— $SET_RETURN_VALUE
— $SET_UNWIND_TABLE

Traceback Application
Programming Interface for
OpenVMS I64

Allows a user application access to Traceback information.

(continued on next page)

Summary of HP OpenVMS Version 8.2 New Features 1–3

Summary of HP OpenVMS Version 8.2 New Features
1.1 Summary Table

Table 1–1 (Cont.) Summary of OpenVMS Version 8.2 Software Features

Associated Products Features

Common Data Security
Architecture (CDSA) Version
2.1

Supports new encryption type.

Kerberos for OpenVMS Kerberos Version 2.1 for OpenVMS is based on MIT Kerberos V5
Release 1.2.6 with CERT patches up to Release 1.2.8. Support for both
Kerberos clients and servers is provided on OpenVMS I64, OpenVMS
Alpha, and OpenVMS VAX. New features in Kerberos for OpenVMS
Version 2.1 include the ktutil command, which invokes a menu from
which an administrator can read, write, or edit entries in a Kerberos
V5 keytab or V4 srvtab file.

HP OpenVMS Management
Station Version 3.2-D

OpenVMS Management Station Version 3.2-D is included with
OpenVMS Alpha Version 8.2.

HP SSL for OpenVMS HP SSL Version 1.2 is based on OpenSSL 0.9.7d with fixes to security
vulnerabilities reported by openssl.org. Support for HP SSL is provided
on OpenVMS I64, OpenVMS Alpha, and OpenVMS VAX. New features
in HP SSL Version 1.2 include OCSP (Online Certificate Status
Protocol), AES (Advanced Encryption Standard), and Elliptic Curve
cryptography.

HP TCP/IP Services for
OpenVMS

Version 5.5 of this product is supported on OpenVMS Version 8.2.

UNIX Portability Features UNIX portability features are introduced for easier porting of UNIX
applications to OpenVMS.

Open Source Tools for OpenVMS The Open Source Tools CD, included with OpenVMS Version 8.2, has
a number of utilities and sources to expedite porting from UNIX to
OpenVMS.

1.2 Major Differences Between OpenVMS Alpha and OpenVMS I64
Systems

The following list describes some of the very pronounced differences between
Alpha and I64 platforms:

• Consoles and console line connections

The Integrity server allows console line connections by two different serial
lines on current Integrity platforms. One serial line connects to the BMC
console and the other to an optional Management Processor (MP). In addition,
the Management Processor allows for a network connection and TELNET
access for even more management flexibility.

Both consoles allow for management of hardware and can perform functions
such as resetting the system or powering on or off the system. The
Management Processor is the preferred method, because it provides more
management features than the BMC console.

• Connecting to the system console

The BMC and MP consoles allow for connection to the system console. For
Integrity servers, this is the EFI shell. The mechanism for setting up boot
devices and boot options are very different from the Alpha SRM console. In
addition, once the system is booted, the EFI shell is no longer available. On
Alpha, you can still get back to the SRM console while the system is booted.

1–4 Summary of HP OpenVMS Version 8.2 New Features

Summary of HP OpenVMS Version 8.2 New Features
1.2 Major Differences Between OpenVMS Alpha and OpenVMS I64 Systems

• Bootable devices for Integrity servers

Bootable devices for Integrity servers have a FAT partition with the initial
bootstrap programs.The EFI shell can find and read this partition. The
system is booted by running an initial bootstrap program called vms_
loader.efi, contained in the FAT partition.

There is no environment variable that specifies the boot device. Instead, the
EFI shell allows for the creation of menu items that execute vms_loader.efi on
a specific disk.

• Console environment variables on Integrity servers

The boot flags can be specified by vms_flags. On Alpha, the name BOOT_
OSFLAGS is used. There are no environment variable to configure SCSI or
LAN devices. Any LAN configuration settings would need to be done within
the LANCP program.

• Licensing

While the basic LMF management functions remain the same, new licensing
practices for OpenVMS I64 differ from what is available for OpenVMS Alpha
and OpenVMS VAX. The primary differences involve:

— The way license units are assigned and counted

— The types of licenses offered

— Update licenses:

— For I64 systems, update licenses are not offered. A customer must be
an active Software Updates Service customer to be eligible to receive
new revisions of software or the customer must purchase the product
again. Information regarding Software Updates service and other HP
Service offerings are available at:

http://www.hp.com/hps/software

— For Alpha systems, update licenses continue to be available for
non-Service customers or Service customers whose contract has
lapsed.

Refer to the HP OpenVMS License Management Utility Manual for
information about the licensing for OpenVMS I64 systems.

• Privileged architecture library code (PALcode) functions moved into OpenVMS

OpenVMS Alpha calls PALcode to execute atomic functions such as memory
barrier (MB), Halt and Bugcheck. These functions are now part of OpenVMS
I64 instead of in the console firmware.

• OpenVMS Calling Standard

The implementation of the OpenVMS Calling Standard on the Intel®
Itanium® processor family is based on the Intel Calling Standard. OpenVMS
extensions were added for compatibility with VAX and Alpha code.

If your current application has detailed knowledge of the internals of the
calling standard format, refer to the HP OpenVMS Calling Standard for
information about the OpenVMS Calling Standard implementation for
OpenVMS Version 8.2.

Summary of HP OpenVMS Version 8.2 New Features 1–5

Summary of HP OpenVMS Version 8.2 New Features
1.2 Major Differences Between OpenVMS Alpha and OpenVMS I64 Systems

• IEEE floating-point format

AlphaServers support VAX floating-point data types and IEEE floating-point
data types in hardware. Integrity servers support IEEE floating-point in
hardware but VAX floating-point data types are supported in software. The
OpenVMS I64 compilers provide the /FLOAT_D_FLOAT and /FLOAT_G_
FLOAT qualifiers to enable you to produce VAX floating-point data types. If
you do not specify one of these qualifiers, IEEE floating-point data types are
used.

Refer to Porting Applications from HP OpenVMS Alpha to HP OpenVMS
Industry Standard 64 for Integrity Servers manual for more information
about IEEE floating-point data types as they apply to OpenVMS Version 8.2.

Prior to getting started with an Integrity server system, read the HP OpenVMS
Version 8.2 Release Notes, HP OpenVMS Version 8.2 Upgrade and Installation
Manual, and this manual.

1–6 Summary of HP OpenVMS Version 8.2 New Features

2
General User Features

This chapter provides information about new features for all users of the HP
OpenVMS Alpha and OpenVMS I64 operating systems.

2.1 DCL Commands and Lexical Functions
Table 2–1 and Table 2–2 summarize new and changed DCL commands, qualifiers,
and lexical functions for OpenVMS Version 8.2. For more information, refer to
online help or the HP OpenVMS DCL Dictionary.

Table 2–1 Updates to DCL Commands and DCL Documentation

DCL Command Documentation Update

ANALYZE/IMAGE New qualifiers: /FLAG_VALUES, /SECTIONS, /SEGMENTS, /SELECT

ANALYZE/OBJECT New qualifiers: /FLAG_VALUES, /SECTIONS, /SELECT

ANALYZE/SSLOG New command. Refer to the HP OpenVMS System Analysis Tools Manual for
details.

APPEND New /BLOCK_SIZE qualifier.

ASSIGN New /CLUSTER_SYSTEM qualifier.

CHECKSUM New command.

COPY New /BLOCK_SIZE qualifier.

CREATE/MAILBOX New command.

DEASSIGN New /CLUSTER_SYSTEM qualifier.

DEFINE New /CLUSTER_SYSTEM qualifier.

DELETE ’file’ New /GRAND_TOTAL qualifier.

DELETE/BITMAP New command.

DELETE/MAILBOX New command.

DIRECTORY New keyword VERSION for /SELECT.

INITIALIZE New /GPT qualifier, new keywords for /ERASE, changes to /LIMIT, and
/CLUSTER_SIZE default raised to 16.

OPEN New /NOSHARE qualifier.

PATCH Former VAX-only command now runs on all three platforms.

PURGE New /GRAND_TOTAL qualifier.

SEARCH New qualifiers: /LIMIT, /SKIP, /WILDCARD_MATCHING

SET BOOTBLOCK New command (for I64 only).

SET DISPLAY Additional values for /TRANSPORT and /PMTRANSPORT to support Internet
Protocol version 6 (IPv6).

(continued on next page)

General User Features 2–1

General User Features
2.1 DCL Commands and Lexical Functions

Table 2–1 (Cont.) Updates to DCL Commands and DCL Documentation

DCL Command Documentation Update

SET IMAGE New command.

SET PROCESS New /TOKEN and /SSLOG qualifiers and updated /RESOURCE_WAIT
qualifier.

SET SERVER Revised /CONFIGURE description. SET SERVER is now documented as three
unique commands, which makes online help more user friendly.

SET SHADOW Several additions to support Host-Based Minimerge.

SET TERMINAL New /BACKSPACE qualifier.

SHOW DEVICES Support added to display data in bytes when /FULL is specified.

SHOW FASTPATH New command.

SHOW IMAGE New command.

SHOW LICENSE New /HIERARCHY and /OE qualifiers.

SHOW LOGICAL New /CLUSTER qualifier; expanded display for /FULL.

SHOW PROCESS New /CASE_LOOKUP and /TOKEN qualifiers; revised example for Red Sox
fans.

SHOW SERVER SHOW SERVER is now documented as two unique commands, which makes
online help more user friendly.

SHOW SHADOW Several additions to support host-based minimerge.

SHOW SYSTEM New /IMAGE qualifier.

SHOW TERMINAL New field at end of display.

SHOW WORKING_SETS New capability to display in bytes.

WRITE New /WAIT[/NOWAIT] qualifier.

Table 2–2 Updates to DCL Lexicals and Lexicals Documentation

DCL Lexical Documentation Update

F$FID_TO_NAME New lexical function.

F$GETDVI New pathname argument and many new item codes.

F$GETJPI New TOKEN item code.

F$GETSYI List of item codes updated.

F$LICENSE New lexical function.

F$MULTIPATH New lexical function.

F$UNIQUE New lexical function.

2.2 License Management Facility Enhancements (LMF)
The License Management Facility has been updated to support two new business
practices for OpenVMS on I64 systems: operating environments (OEs) and
per-processor licensing (PPL).

Operating environments include the operating system and bundled applications
in an integrated package. Currently, three different operating environments are
available for OpenVMS I64 systems:

• HP OpenVMS Foundation Operating Environment (FOE)

• HP OpenVMS Enterprise Operating Environment (EOE)

2–2 General User Features

General User Features
2.2 License Management Facility Enhancements (LMF)

• HP OpenVMS Mission Critical Operating Environment (MCOE)

New qualifiers to LMF commands allow you to manage your operating
environment licenses. One license now turns on FOE, EOE, or MCOE depending
on which one you have purchased. This change reduces complexity of LMF
management and improves flexibility of operations.

A new license type—per-processor or PPL—is required to run the operating
environments. You need a license for each active processor in your I64 system.

Refer to the HP OpenVMS License Management Utility Manual manual for more
information about licensing.

2.3 Monitor Utility Enhancements
The Monitor utility has been ported as a native utility for both OpenVMS Alpha
and OpenVMS I64 systems. Several enhancements were made to the utility
during the port:

• Several classes of data (such as DISK) now utilize the entire screen height
when displaying information.

• The SYSTEM class now displays the number of "current" processes in Process
States. Previously, current processes were grouped in the "Other" category.

• The format of the recorded data file has changed with this release. The
format changes were made to improve the alignment of the recorded data.
For information about the Supplemental MONITOR Information - Record
Formats, see the appendix in HP OpenVMS System Management Utilities
Reference Manual. These changes do not allow pre-V8.2 systems to read
the new format of a recorded data file. There is, however, a utility in
SYS$EXAMPLES which allows a new format data file to be converted to
the pre-V8.2 format. The utility is called SYS$EXAMPLES:MONITOR_
CONVERT.C. An executable is also provided. To use the utility, use the
following command:

$ mc system$examples:monitor_convert input-file output-file

• Various performance improvements were made to the MONITOR data
collection routines to reduce system overhead when using the Monitor utility.

2.4 OpenVMS I64 Operating Environments (OEs)
OpenVMS Version 8.2 introduces a new way of providing the OpenVMS
operating system and its layered products with the OpenVMS I64 system.
Unlike OpenVMS Alpha, the OpenVMS I64 operating system provides three
different packages available on Integrity servers:

• HP OpenVMS Foundation Operating Environment (FOE) is an Internet-ready
feature-rich offering with leading price and performance.

• HP OpenVMS Enterprise Operating Environment (EOE) delivers enhanced
manageability functions, single-system availability, and performance.

• HP OpenVMS Mission Critical Operating Environment (MCOE) delivers the
highest levels of multi-system availability and workload management.

General User Features 2–3

General User Features
2.4 OpenVMS I64 Operating Environments (OEs)

All three operating environments are included on one DVD. Your license
agreement determines to which operating environment you have access.

Note

These OpenVMS I64 operating environments are licensed on a per-
processor basis (PPL) and not on system capacity. Alpha licensing
remains unchanged.

For a comprehensive list of technical specifications, go to the Software Products
Description Web site:

http://www.hp.com/info/spd

For more information about HP OpenVMS Operating Environments, contact your
HP Sales Representative.

2–4 General User Features

3
System Management Features

This chapter provides information about new features, changes, and
enhancements for system managers.

3.1 OpenVMS I64 Boot Manager (BOOT_OPTIONS.COM) Utility
The OpenVMS I64 Boot Manager (BOOT_OPTIONS.COM) utility is a menu-
based utility that allows you to easily manage EFI boot options on an Integrity
server running OpenVMS I64. The utility allows you to:

• Set your Integrity server with a boot option for your system disk, dump
device, or debug device

• Display OpenVMS boot entries

• Determine the position of the entry in the EFI Boot Manager; for example,
you can ensure that your system disk is first on the option list so that it boots
automatically when the system is powered on or rebooted

• Set boot flags for the entry

• Remove an entry

• Set or disable the EFI timeout (the time the EFI Boot Manager waits before
booting the first or next available entry on the boot list)

• Validate boot entries

• Configure boot, dump, and debug devices while OpenVMS is running. To
configure boot devices, you do not have to shut down the operating system
and enter commands at the console as you do on Alpha systems.

After installing OpenVMS I64, HP recommends using the the utility to add your
system disk as the first boot option in the EFI Boot Manager list. This utility is
required for configuring booting on Fibre Channel storage devices; it is optional
for all other devices. Because it is so easy to use, HP recommends using this
utility rather than the EFI Boot Manager wherever possible. For information on
configuring Fibre Channel devices, refer to the Guidelines for OpenVMS Cluster
Configurations manual. For more information on the OpenVMS Boot Manager
utility, refer to the HP OpenVMS System Manager’s Manual.

3.2 Clustering on OpenVMS I64 Systems
With few exceptions, OpenVMS Cluster software provides the same features
on OpenVMS I64 systems as it currently offers on OpenVMS Alpha and VAX
systems.

Key OpenVMS Cluster features include:

• Fully shared, multiple-node read/write disk access

• Clusterwide file system

System Management Features 3–1

System Management Features
3.2 Clustering on OpenVMS I64 Systems

• Clusterwide batch/print queue subsystem

• Distributed lock manager

• Votes/quorum-based membership management

• Single security domain

• Single system management domain

• Rich, clusterwide API

• Mixed-architecture clusters

• Support for rolling upgrades

• Support for multiple interconnects (see Section 3.2.1)

• Support for a maximum of sixteen systems in a mixed-architecture cluster,
eight of which can be I64 systems

• Failover and load balancing

• Cluster network alias

• Disk and tape serving

• Disaster-tolerant capabilities with support for distances up to 500 miles (800
kilometers) using Disaster-Tolerant Cluster Services (DTCS)

Satellite booting is not supported in this release. It is planned for a future
release.

3.2.1 OpenVMS I64 Cluster Interconnect Support
Ethernet, Fast Ethernet, and Gb Ethernet can be used for cluster communications
(SCS traffic) on OpenVMS I64 systems. However, FDDI and ATM, which are
supported for cluster communications on OpenVMS Alpha systems, are not
supported on OpenVMS I64 systems.

While FDDI and ATM adapters are not supported as cluster interconnects
on OpenVMS I64 systems, they are supported as inter-site interconnects in a
multiple-site cluster. You can use bridges or switches to connect the OpenVMS
I64 node’s FastEthernet/GigabitEthernet NIC(s) to any inter-site interconnect the
WAN supplier provides, such as T3, E3, SONET, ATM, FDDI, DWDM, or others.

OpenVMS Cluster software supports the following three proprietary cluster
interconnects on Alpha systems, but they are not supported on OpenVMS
I64 systems: DSSI (DIGITAL Systems Storage Interconnect), CI (Cluster
Interconnect), and MEMORY CHANNEL.

Although DSSI and CI are not supported on OpenVMS I64 systems, data stored
on DSSI and CI disks connected to Alpha systems can be served to OpenVMS I64
systems in the same cluster.

Fibre Channel is supported as a shared-storage cluster interconnect on OpenVMS
I64 systems but SCSI is not. (SCSI as a shared-storage cluster interconnect is
also not supported for OpenVMS Alpha systems for the recent SCSI adapters.)

However, data stored on SCSI disks directly attached to either OpenVMS I64
systems or to OpenVMS Alpha systems can be served to any other members of
the cluster. This is also true for any locally attached storage in an OpenVMS
Cluster system.

3–2 System Management Features

System Management Features
3.2 Clustering on OpenVMS I64 Systems

3.2.2 Mixed-Architecture Clusters
OpenVMS supports both OpenVMS Alpha and OpenVMS I64 systems in a mixed-
architecture cluster. The OpenVMS Alpha version supported in this configuration
is OpenVMS Alpha Version 7.3–2. Mixed-version support for all these versions
requires the installation of one or more remedial kits, as described in the HP
OpenVMS Version 8.2 Release Notes. See the following web site for the HP
OpenVMS Version 8.2 documentation set:

http://www.hp.com/go/openvms/doc

Figure 3–1 shows an OpenVMS Cluster system to which OpenVMS I64 systems
have been added.

Figure 3–1 OpenVMS Cluster Systems with Alpha and I64 Systems

Alpha Alpha

LAN

I64I64

HSJ HSJ HSGEVA

VM-1122A-AI

Star Coupler FC Switch

CI Fibre Channel

A LAN interconnect is used for cluster communications for all systems in the
cluster. In this configuration, the same Fibre Channel storage can be accessed by
both OpenVMS Alpha and OpenVMS I64 systems at the same time. Note that
I64 systems directly connected to the Fibre Channel disks can be served data
from the CI disks. In an OpenVMS mixed-architecture cluster, each architecture
requires a minimum of one system disk. For this release, up to eight I64 systems
are supported in a cluster. In a mixed-architecture cluster, this means you can

System Management Features 3–3

System Management Features
3.2 Clustering on OpenVMS I64 Systems

include up to eight I64 systems with Alpha systems so that the total number of
systems does not exceed sixteen.

3.2.2.1 Storage in a Mixed-Architecture Cluster
This section describes the rules pertaining to storage, including system disks, in
a mixed-architecture cluster consisting of OpenVMS I64 and OpenVMS Alpha
systems.

Figure 3–2 is a simplified version of a mixed-architecture cluster of OpenVMS I64
and OpenVMS Alpha systems with locally attached storage and a shared Storage
Area Network (SAN).

Figure 3–2 Storage in Mixed-Architecture OpenVMS Cluster

VM-1120A-AI

LAN

I64 Alpha

SAN

Tape

Tape

Tape

I64 systems in a mixed-architecture OpenVMS Cluster system:

• Must have an I64 system disk, either a local disk or a shared Fibre Channel
disk.

• Can use served Alpha disks and served Alpha tapes.

• Can use SAN disks and tapes.

• Can share the same SAN data disk with Alpha systems.

• Can serve disks and tapes to other cluster members, both I64 and Alpha
systems.

Alpha systems in a mixed-architecture OpenVMS Cluster system:

• Must have an Alpha system disk, which can be shared with other clustered
Alpha systems.

• Can use locally attached tapes and disks.

• Can serve disks and tapes to both I64 and Alpha systems.

• Can use I64 served data disks.

• Can use SAN disks and tapes.

• Can share the same SAN data disk with I64 systems.

3–4 System Management Features

System Management Features
3.3 EFI for OpenVMS Utilities

3.3 EFI for OpenVMS Utilities
EFI Utilities provide device management capabilities for Integrity servers
with OpenVMS I64 systems. These utilities interact with the EFI Shell. The
commands that invoke them must be issued from \efi\vms at the EFI Shell>
prompt, after shutting down the OpenVMS operating system:

• VMS_BCFG: Adds a boot entry to the EFI Boot Manager, allowing you to
specify an OpenVMS device name for the entry. (HP recommends using
the OpenVMS I64 Boot Manager (BOOT_OPTIONS.COM) utility for this
purpose.)

• VMS_SET: Sets the dump device and the debug device to the specified
OpenVMS device name.

• VMS_SHOW: Displays the equivalent OpenVMS device name for devices
mapped by the EFI console.

For more information, refer to the EFI utilities chapter in the HP OpenVMS
System Management Utilities Reference Manual.

3.4 HP Performance Data Collector (TDC)
HP Performance Data Collector for OpenVMS (TDC V2.1) is available for use
with OpenVMS Version 8.2. The Performance Data Collector (TDC) can be used
to collect approximately 1100 system performance metrics from Alpha and I64
systems for analysis by other application software.

Metrics that are provided include the following:

• Cache and memory utilization and performance

• Cluster configuration and communications

• CPU utilization

• Disk utilization and performance

• Distributed Lock Manager performance

• Distributed Transaction Manager performance

• File system performance

• Networking hardware and software performance

• Process metrics

• Miscellaneous system performance metrics (for example, paging, swapping,
and faulting)

• System parameter settings

A run-time-only variant of the Performance Data Collector (TDC_RT V2.1) is
installed with OpenVMS Version 8.2. The run-time variant provides a data
collector application and support files. The collector application does not run
automatically; however, a suitably privileged user can start and stop it manually.

A downloadable kit provides a Software Developer Kit (SDK) as well as run-time
environments for all supported system configurations:

System Management Features 3–5

System Management Features
3.4 HP Performance Data Collector (TDC)

Platform OpenVMS Version

Alpha systems Version 7.3-2 or Version 8.2

I64 systems Version 8.2

The SDK provides both a programmer manual that documents the TDC
Application Programming Interface (API) and C header files and sample code.
The API can be used to develop software to integrate TDC with other applications
in various ways, including:

• Extracting data from a TDC data file for analysis

• Feeding data "live" to another application as the data is collected by TDC,
without first storing the data in a file

• Supplementing the metrics provided by TDC with other metrics of interest, in
a fully integrated and supported fashion

Software built using the SDK will work with any runtime environment provided
either by the TDC_RT kit, which is distributed and installed with OpenVMS, or
by the full TDC kit.

The downloadable full kit and additional documentation are available at the
following web site:

http://h71000.www.7hp.com/openvms/products/tdc/

3.5 Ethernet LAN Drivers: Full-Duplex or Half-Duplex Mode
Mismatch

Ethernet LAN drivers can operate in full-duplex or half-duplex mode under one
of the following conditions:

• On Alpha systems, according to the console environment variable setting

• On Alpha or I64 systems, according to the LANCP device database setting

• If autonegotiation is enabled, in negotiation with the switch or link partner

For any of these conditions, if the duplex mode is set incorrectly, a duplex mode
mismatch condition occurs.

An example of a duplex mode mismatch condition is the following:

A LAN device is set to operate in full-duplex mode at 100 megabits per second.
However, the switch port is set to autonegotiate. The switch port determines the
speed correctly, but selects half-duplex mode.

3.5.1 Result of Duplex Mode Mismatch
When a duplex mode mismatch condition occurs, the end of the link in full-
duplex mode transmits whenever transmit data is available. It transmits without
checking whether an incoming receive packet already occupies the link. This
situation results in transmit and receive errors.

Any error represents a lost packet, which requires the application to do one of the
following:

• Perform error recovery to detect and retransmit the packet.

• Have the link partner retransmit the packet.

3–6 System Management Features

System Management Features
3.5 Ethernet LAN Drivers: Full-Duplex or Half-Duplex Mode Mismatch

Depending on the application, you might observe a significant degradation in
performance. Therefore, it is important to detect and correct this condition.

3.5.2 Detection and Correction of Duplex Mode Mismatch
Ethernet LAN drivers for all full-duplex-capable LAN devices have been modified
to detect and report this condition so that a system manager can correct it. Each
driver checks error counters periodically. If it appears that a duplex mismatch
condition exists, the driver displays the following console message:

%EWAO, Possible duplex mode mismatch condition detected

In addition, the LAN driver makes an error log entry that you can identify by the
type OxDD (if the error log viewer does not decode the entry into English). The
LAN drivers make other error log entries for link-up and link-down transitions.

You can decipher error log entries by searching LAN driver error logs for the
following error types:

Error Type Description

OxCA Connection available (link up)

OxCD Connection down (link down)

OxDD Dubious duplex (possible duplex mismatch)

Note that each error log entry has the same format, and the type code is in the
same location.

The error log entry and console message are repeated every hour until the
condition is resolved.

You can use LANCP or ANALYZE/SYSTEM to gather more information from
device counters.

3.6 Host-Based Adapter (HBA) Support
The following sections describe the HBA support in OpenVMS Version 8.2:

• Fibre Channel Host-Based Adapter

• Ultra SCSI Host-Based Adapter

3.6.1 Fibre Channel HBA Support on OpenVMS I64 and OpenVMS Alpha
Systems

OpenVMS I64 Version 8.2 supports only the dual-port 2GB/1GB Fibre Channel
Universal PCI-X HBA (A6826A) for external connection to Fibre Channel storage.
This HBA is supported by a new driver, the PGQDRIVER, which has been
implemented as a port driver to the existing DKDRIVER. The PCI-X 1-port
FCA2404 2GB adapter (AB232A or KGPSA-EA, aka LP9802 for AlphaServers)
supported on the OpenVMS I64 V8.1 Evaluation Release for Integrity servers
is no longer supported on OpenVMS V8.2 or later. For external Fibre Channel
storage, customers should plan accordingly to replace AB232A or KGPSA-EA FC
adapters with the A6826A adapter.

OpenVMS Alpha Version 8.2 supports the new Fibre Channel HBA, the LP10000.
The LP10000 is supported on the AlphaServer DS and ES server families. The
LP10000 is available in a single-channel or dual-channel version.

System Management Features 3–7

System Management Features
3.6 Host-Based Adapter (HBA) Support

The LP10000 is supported on earlier versions of OpenVMS Alpha (Version 7.3-1,
and Version 7.3-2) by means of patch kits and by firmware console V6.6.

The version-specific patch kits with a root name of FIBRE_SCSI will be available
at the following website:

http://h71000.www7.hp.com/serv_support.html

Under Service tools, select either Patches for OpenVMS or FTP site for OpenVMS
patches.

For more detailed information about these HBAs, refer to the hardware
documentation for your HP Integrity server or for your adapter.

3.6.2 Ultra SCSI HBA Support on OpenVMS I64 Systems
OpenVMS I64 V8.2 supports the following Ultra SCSI HBAs on HP Integrity
server systems:

• Ultra-160 SCSI dual channel (A6829A)—on HP rx4640 Integrity servers

• Ultra-320 SCSI dual channel (A7173A)—embedded in HP Integrity rx2600
server and HP Integrity rx1600 server

External SCSI storage requires the addition of an Ultra-160 dual-port SCSI
adapter (A6829A), which can be housed in DS2100, MSA30, or 4200/4300 series
shelves.

Note

OpenVMS does not support shared SCSI storage using these adapters in
an OpenVMS Cluster system consisting of either OpenVMS I64 systems
only, or a mix of OpenVMS I64 systems and OpenVMS Alpha systems.

These adapters are also supported by HP on the following operating systems from
HP: HP-UX, Linux, and the Microsoft XP 64-bit operating system.

For more detailed information, refer to the hardware documentation that
accompanies your HP Integrity server.

3.7 System Analysis Tools Enhancements
The System Analysis Tools have been enhanced with new commands and new
features for use with both Alpha and I64 systems. The new commands and
features make it easier to analyze an OpenVMS system.

For more detailed information, refer to the HP OpenVMS System Analysis Tools
Manual.

3.7.1 New and Enhanced SDA Commands
The following commands have been enhanced or are new for I64 use:

• EVALUATE

• EXAMINE

• FLT

• FORMAT

• READ

3–8 System Management Features

System Management Features
3.7 System Analysis Tools Enhancements

• SET CPU

• SET OUTPUT

• SHOW

– CALL_FRAME

– CBB

– CEB

– CPU

– CRASH

– DEVICE

– EXCEPTION_FRAME

– EXECUTIVE

– GLOBAL_SECTION_TABLE

– GST

– IMAGE

– KFE

– PAGE_TABLE

– PARAMETER

– PROCESS

– STACK

– SWIS

– TQEIDX

– UNWIND

• VALIDATE TQEIDX

• WAIT

3.7.2 System Service Logging
System Service Logging records information about system service activity within
a process. It is intended for use when troubleshooting a system.

Logging is turned on with the SET PROCESS/SSLOG=(STATE=ON) command.
Logging is stopped with the SET PROCESS/SSLOG=(STATE=UNLOAD)
or (STATE=OFF) command. Logged information is displayed with the
ANALYZE/SSLOG command. SSLOG.DAT is the default file where logged
information is captured.

For additional information, see the HP OpenVMS System Analysis Tools Manual.

3.8 System Parameters
The system parameters in the following sections are new in Version 8.2. The
last section lists the system parameters that have been changed in Version 8.2.
For more detailed information, refer to the HP OpenVMS System Management
Utilities Reference Manual.

System Management Features 3–9

System Management Features
3.8 System Parameters

3.8.1 New System Parameters
The following parameters are new in OpenVMS Version 8.2:

• ERLBUFFERPAG_S2

ERLBUFFERPAG_S2 specifies the amount of S2 space memory to allocate
for each S2 space error log buffer requested by the ERRORLOGBUFF_S2
parameter.

• ERRORLOGBUFF_S2

ERRORLOGBUFF_S2 specifies the number of S2 space error log buffers
reserved for system error log entries. Each buffer is ERLBUFFERPAG_S2 in
length. If ERRORLOGBUFF_S2 is too low, messages might not be written
to the error log file. If it is too high, the buffers can consume unnecessary
physical pages.

• SCSI_ERROR_POLL

The purpose of SCSI_ERROR_POLL is to cause OpenVMS to send a SCSI
Test Unit Ready command every hour to each SCSI disk, in an attempt to
force latched errors to become unlatched and to be reported immediately.
SCSI_ERROR_POLL has a default value of 1. However, it can be set to 0 by
the user in order to stop the error polling activity.

• SHADOW_ENABLE

Special parameter reserved for HP use.

• SHADOW_HBMM_RTC (Alpha and I64 only)

SHADOW_HBMM_RTC controls the interval the system waits between the
checking of reset thresholds for shadow sets that have Host-Based Minimerge
(HBMM) bitmaps. If the reset threshold is exceeded, the bitmap is zeroed.

• SHADOW_PSM_DLY

When a copy or merge operation is needed on a shadow set that is mounted
on many systems, the Shadowing facility attempts to perform the operation
on a system that has a local connection to all the shadow set members.
Shadowing implements the copy or merge operation by adding a time delay
based on the number of shadow set members that are MSCP-served to the
system. No delay is added for local members; therefore, a system with all
locally accessible shadow set members usually performs the copy or merge
before a system on which one or more members is served—and is therefore
delayed—does.

SHADOW_PSM_DLY allows the system manager to adjust the delay that
Shadowing adds. By default, the delay is 30 seconds for each MSCP-served
shadow set member. The valid range for the specified delay is 0 through
65,535 seconds.

When a shadow set is mounted on a system, the value of SHADOW_PSM_
DLY is used as the default shadow set member recovery delay for that shadow
set. To modify SHADOW_PSM_DLY for an existing shadow set, refer to the
SET SHADOW/RECOVERY_OPTIONS=DELAY_PER_SERVED_MEMBER=n
command.

3–10 System Management Features

System Management Features
3.8 System Parameters

• SHADOW_REC_DLY (Alpha and I64 only)

The value of SHADOW_REC_DLY is added to the value of the
RECNXINTERVAL parameter to determine the length of time a system
waits before it attempts to manage recovery operations on shadow sets that
are mounted on the system, using the priority of the shadow sets.

• SHADOW_SITE_ID (Alpha and I64 only)

SHADOW_SITE_ID allows a system manager to define a site value, which
Volume Shadowing uses to determine the best device to perform reads,
thereby improving performance. The system manager can now define the site
value to be used for all shadow sets mounted on a system.

• SYSSER_LOGGING (Alpha and I64 only)

A value of 1 for SYSSER_LOGGING enables logging of system service
requests for a process. The default is 1. This parameter is dynamic.

• TTY_DEFCHAR3 (Alpha and I64 only)

TTY_DEFCHAR3 allows a user to set a bit so that the OpenVMS terminal
driver remaps Ctrl/H to Delete. HP recommends that you not set this bit as a
systemwide default.

Characteristic Value (Hex) Function

TT3$M_BS 10 When this bit is set, the
OpenVMS terminal console
remaps CTRL/H to Delete.

• VHPT_SIZE (I64 only)

VHPT_SIZE is the number of kilobytes to allocate for the Virtual Hash Page
Table (VHPT) on each CPU in the system:

• 0 indicates that no VHPT is allocated.

• 1 indicates that OpenVMS chooses a default size that is appropriate for
your system configuration.

3.8.2 Changed System Parameters
Definitions of the following system parameters have been changed in OpenVMS
Version 8.2:

• BALSETCNT

• CHANNELCNT

• CRD_CONTROL

• DEVICE_NAMING

• ERLBUFFERPAGES

• ERRORLOGBUFFERS

• FAST_PATH_PORTS

• GALAXY

• GLX_SHM_REG

• LAN_FLAGS

• LCKMGR_MODE

System Management Features 3–11

System Management Features
3.8 System Parameters

• MMG_CTLFLAGS

• MULTITHREAD

• NISCS_MAX_PKTSZ

• PQL_MASTLM

• PQL_MENQLM

• SECURITY_POLICY

• SHADOW_MBR_TMO

• VCC_FLAGS

In addition to the parameters in this list, many parameters that were formerly
designated as Alpha only are now Alpha and I64.

For more detailed information, refer to the HP OpenVMS Version 8.2 Release
Notes and HP OpenVMS System Management Utilities Reference Manual.

3.9 Additional Time Zones Added to Database
In OpenVMS Version 8.2, 540 time zones are provided based on the time-zone
public database, named tzdata2003e, placed in ftp://elsie.nci.nih.gov/pub/.
Existing time zones are updated, and there are 204 new time zones added to
the database. For a list of the new time-zone names, see HP OpenVMS System
Manager’s Manual.

3.10 Volume Shadowing for OpenVMS New Features
Volume Shadowing for OpenVMS introduces the following new features in this
release:

• Host-Based Minimerge (HBMM)

HBMM is designed to improve shadow set merge operations. HBMM uses
a bitmap to track the blocks that changed. HBMM compares and reconciles
only those sections of the shadow set where changes occurred since the
bitmap was reset.

An HBMM policy keyword, RESET_THRESHOLD, is used to specify the
number of blocks that can be changed before the bitmap is cleared. A new
system parameter, SHADOW_HBMM_RTC, is used to specify how frequently
the bitmap is checked to determine if the number of changed blocks exceeds
the RESET_THRESHOLD setting. If it does, the bitmap is cleared. HBMM
operations can be significantly faster than full merges, depending on the
value of RESET_THRESHOLD.

• Prioritizing merge and copy operations

You can now control the order in which merge and copy operations occur
on the remaining systems in a cluster after a system failure. The new
/PRIORITY=n qualifier to the SET SHADOW command can be used to assign
different priorities to all mounted shadow sets. Assigning higher priorities to
the most important volumes ensures that they are merged or copied before
less important volumes, which are assigned a lower priority.

You can dynamically increase or decrease the SHADOW_MAX_COPY setting
as circumstances change in the cluster. Without having to dismount the
shadow sets, you can use the new EVALUATE_RESOURCES qualifier to
the SET SHADOW command to cause a system to adjust its workload to a

3–12 System Management Features

System Management Features
3.10 Volume Shadowing for OpenVMS New Features

new SHADOW_MAX_COPY value or to new priorities specified with the SET
SHADOW/PRIORITY=n DSAn command.

A new system parameter, SHADOW_REC_DLY, enables you to predict the
order that each system attempts to manage copy or merge operations after
a system failure. You can assign the shortest delays to the systems that are
best able to perform recovery operations.

• Licensing Volume Shadowing for OpenVMS

You can purchase capacity licenses, per CPU, for OpenVMS I64 systems.
OpenVMS Alpha Version 8.2 continues to provide capacity and per-disk
licenses.

For OpenVMS I64 computers, a volume shadowing license is available either
as a separate product or as part of the collection of OpenVMS products known
as the Enterprise Operating Environment. For more information about the
Enterprise Operating Environment, refer to the HP Operating Environments
for OpenVMS Industry Standard 64 Version 8.2 for Integrity Servers Software
Product Description (SPD 82.34.xx).

For more information about volume shadowing licensing, refer to the
HP Volume Shadowing for OpenVMS Software Product Description (SPD
27.29.xx). For more information about the License Management Facility,
refer to the OpenVMS operating system SPD or the HP OpenVMS License
Management Utility Manual.

For more information about the HBMM new feature, refer to Chapter 6.

System Management Features 3–13

4
Programming Features

This chapter describes new features relating to application and system
programming in this version of the HP OpenVMS operating system.

4.1 Analyze Utility Enhancements (I64 Only)
The Analyze utility has been enhanced on OpenVMS I64 systems to analyze
Executable and Linkable Format (ELF) object and image files. Additional
information describing these enhancements has been added to the HP OpenVMS
DCL Dictionary for the ANALYZE/IMAGE and ANALYZE/OBJECT commands.

Using record formats and landmark values in the file, the ANALYZE utility on
OpenVMS I64 can determine the architecture type and whether the file is an
object or image file. Although ANALYZE accepts the /OBJECT and /IMAGE
qualifiers, these qualifiers do not restrict the analysis to the specified file type.

For more information about the enhancements to the Analyze utility, see the HP
OpenVMS DCL Dictionary.

4.2 OpenVMS Calling Standard Changes for OpenVMS I64
The OpenVMS Calling Standard has been adapted for use on systems using Intel
Itanium processors and running OpenVMS I64.

The OpenVMS Calling Standard on the Intel Itanium processor family is
designed to follow the Itanium software conventions as much as possible while
avoiding user-visible differences from the OpenVMS VAX and Alpha conventions.
Changes to the Itanium convention were made only where necessary to maintain
compatibility with the historical OpenVMS design. The goal was to minimize
the cost and difficulty of porting applications and OpenVMS itself to the Itanium
architecture.

Refer to the HP OpenVMS Calling Standard for more information.

4.3 Checksum Utility
The Checksum utility calculates file, image, or object checksums for an OpenVMS
file. The CHECKSUM command invokes the utility, which can now be run on
I64, Alpha, or VAX platforms. The result, or checksum, is available in the DCL
symbol CHECKSUM$CHECKSUM.

For information about this utility, see the CHECKSUM command in the HP
OpenVMS DCL Dictionary.

Programming Features 4–1

Programming Features
4.3 Checksum Utility

4.3.1 CHECKSUM/OBJECT Enhanced for I64 Objects
CHECKSUM/OBJECT for I64 objects (ELF objects) provides new information into
the calculation for a checksum:

• EIDC (entity identification consistency check) information

• FPMODE (whole programming floating-point mode) information

If the EIDC or FPMODE fields are present in an object file, then the I64 object
checksum calculated by an earlier version of the Checksum utility is different
than the one calculated by Checksum on OpenVMS Version 8.2.

The difference can be seen in the checksum of the ".note" section.

The previous version did not calculate any checksum for this section while the
new version calculates the checksum if the information is present. Use the
/SHOW=SECTIONS qualifier to view this behavior.

CHECKSUM/IMAGE is not affected; an image does not have EIDC or FPMODE
information in the ".note" section.

The file checksums (CHECKSUM without /IMAGE or /OBJECT) are also not
affected. File checksums use the whole file or the record structured data to
calculate the checksum.

4.4 C Run-Time Library Enhancements
The following sections describe the C Run-Time Library (RTL) enhancements
included in OpenVMS Version 8.2. These enhancements provide improved UNIX
portability, standards compliance, and the flexibility of additional user-controlled
feature selections. New C RTL functions are also included. For more details,
refer to the HP C Run-Time Library Reference Manual for OpenVMS Systems.

4.4.1 File-Locking Functions
The following X/Open file-locking functions have been added. They allow a user
to lock and unlock files and provide access synchronization across threaded
programs:

flockfile
ftrylockfile
funlockfile
clearerr_unlocked
getc_unlocked
getchar_unlocked
feof_unlocked
ferror_unlocked
fgetc_unlocked
fputc_unlocked
putc_unlocked
putchar_unlocked

4.4.2 Standard-Compliant stat Structure
An X/Open standard-compliant definition of the stat structure and associated
definitions are added. To use these new definitions, applications must compile
with a new feature macro defined:

_USE_STD_STAT

4–2 Programming Features

Programming Features
4.4 C Run-Time Library Enhancements

The following new macros have also been added to support the standard-
compliant stat structure:

S_INO_NUM(ino)
S_INO_SEQ(ino)
S_INO_RVN(ino)
S_INO_RVN_RVN(ino)
S_INO_RVN_NMX(ino)

4.4.3 File-System Statistics Support
The following X/Open functions that return file system information have been
added in support of UNIX portability:

statvfs
fstatvfs

4.4.4 fcntl File Status Flags
The F_SETFL and F_GETFL command options are added to the fcntl function
to set and get file status flags.

4.4.5 UNIX Style Pipe Support
For added UNIX portability, the C RTL pipe implementation now uses stream I/O
as well as record I/O, under control of a new feature logical, DECC$STREAM_
PIPE.

The legacy behavior, record I/O, is the default behavior.

To enable stream I/O pipe support, define the DECC$STREAM_PIPE feature
logical name to ENABLE:

$ DEFINE DECC$STREAM_PIPE ENABLE

4.4.6 DECC$POPEN_NO_CRLF_REC_ATTR
A pipe opened with the popen function has its record attributes set to CR/LF
carriage control (fab$b_rat | = FAB$M_CR). UNIX systems do not insert CR/LF
for pipes.

A new feature logical has been added to provide UNIX compatible behavior. To
override the default legacy behavior and thereby prevent CR/LF carriage control
from being added to the pipe records, define DECC$POPEN_NO_CRLF_REC_
ATTR to ENABLE:

$ DEFINE DECC$POPEN_NO_CRLF_REC_ATTR ENABLE

Be aware that enabling this feature might result in undesired behavior from
other functions, such as gets, that rely on the carriage-return character.

4.4.7 glob and globfree 64-Bit Support
64-bit support is added for the glob and globfree functions. As a result, the
following additional function entry points are now available for use with 32-bit
and 64-bit pointer sizes, respectively:

_glob32 _glob64
_globfree32 _globfree64

Programming Features 4–3

Programming Features
4.4 C Run-Time Library Enhancements

4.4.8 socketpair
The socketpair TCP/IP socket routine has been added.

This routine is used for creating a pair of connected sockets and requires the
underlying TCP/IP product to have the TCPIP$SOCKETPAIR function available.

4.5 DCE RPC Now Supports IEEE Floating-Point Type
DCE RPC for OpenVMS now supports both G_FLOAT and IEEE floating-point
types on OpenVMS Alpha and OpenVMS I64 platforms. The default floating-
point type on the Alpha platform remains G_FLOAT. The default floating-point
type on I64 platform is IEEE_FLOAT.

DCE RPC Application developers need to use the rpc_set_local_float_drep call in
their applications when using the non-default floating-point type

Note

DCE RPC on OpenVMS VAX platforms supports only G_FLOAT type.

4.6 OpenVMS Debugger
The following sections describe new features of the OpenVMS Debugger on
OpenVMS I64 systems.

4.6.1 Intel® Itanium® Hardware Support
OpenVMS I64 Debugger supports the following hardware registers:

• General registers R0 through R127

• Floating registers F0 through F127

• Branch registers B0 through B7

• Predicate registers P0 through P63. You can examine all predicate register
values using the symbol named PR.

• Application registers: AR16 (RSC), AR17 (BSP), AR18 (BSPSTORE), AR19
(RNAT), AR25 (CSD), AR26 (SSD), AR32 (CCV), AR36 (UNAT), AR64 (PFS),
AR65 (LC), AR66 (EC)

• A program counter named PC, synthesized from the hardware IP register and
the ri field of the PSR register

• Miscellaneous registers: CFM (current frame marker), UM (user mask), PSP
(previous stack pointer), and IIPA (previously executed bundle address)

• Output register names OUT0 through OUT7. These names are provided for
convenience to make it easy to identify the registers that are used to pass
integer arguments from the current routine to a called routine. For more
information, refer to the HP OpenVMS Calling Standard.

4–4 Programming Features

Programming Features
4.6 OpenVMS Debugger

4.6.2 OpenVMS I64 Language Support
OpenVMS I64 Debugger supports programs written in the following languages:

BASIC
BLISS
C
C++
COBOL
IMACRO
Fortran
Intel assembler (IAS)
Pascal

4.6.3 Heap Analyzer Available on OpenVMS I64 Systems
The Heap Analyzer is now available on OpenVMS I64 systems and is activated
differently than on Alpha systems. A new start command, START HEAP_
ANALYZER, is available from the debugger command-line prompt (DBG>)
to start the Heap Analyzer from the OpenVMS I64 Debugger. For complete
information, refer to the Heap Analyzer chapter in the HP OpenVMS Debugger
Manual.

4.7 Extended Lock Value Block
A lock value block is a feature of the OpenVMS Lock Manager that provides
a type of synchronized interprocess/intracluster communication. In the past,
OpenVMS applications using the Lock Manager have been able to store and
retrieve up to 16 bytes of lock value block data during locking operations. In
OpenVMS Version 8.2, applications may now optionally store up to 64 bytes of
data in the lock value block.

The $GETLKI system service has been modified to add two new item codes that
this new feature requires. The purpose of the items codes is:

• To retrieve the extended value block (LKI$_XVALBLK) into a 64-byte buffer.

• To indicate whether the last writer wrote a short value block (LKI$_
XVALNOTVALID) into a boolean value in a quadword buffer.

For more information, refer to HP OpenVMS Programming Concepts Manual and
to the HP OpenVMS System Services Reference Manual.

4.8 Librarian Utility and Library Routines (I64 only)
The following sections provide information about the Librarian utility and Library
routines on OpenVMS I64 systems. On OpenVMS Alpha systems, the Librarian
utility and Library routines are unchanged.

Note

The Librarian utility is also referred to as the Librarian. Librarian
routines are sometimes called library services, LBR routines, or LBR$
routines.

Programming Features 4–5

Programming Features
4.8 Librarian Utility and Library Routines (I64 only)

4.8.1 Librarian Usage Summary
You can use the DCL command LIBRARY to invoke the Librarian utility (or use
Library [LBR] routines) to create the following library types:

• I64 (ELF) object library

• I64 (ELF) shareable image library

• Macro library

• Help library

• Text library

The LIBRARY command invokes the OpenVMS Librarian utility from which
you can maintain library modules or simply display information about a library
and its modules. The I64 Librarian utility provides the same features provided
by the Alpha Librarian, except for the changes and restrictions specified in HP
OpenVMS Version 8.2 Release Notes.

Table 4–1 shows the libraries that are created by the Librarian utility for each
OpenVMS platform.

Table 4–1 Libraries Created by OpenVMS Platforms

OpenVMS VAX OpenVMS Alpha OpenVMS I64

VAX object Alpha object I64 object

VAX sharable image Alpha sharable image I64 sharable
image

Alpha object VAX object

Alpha sharable image VAX sharable image

Macro Macro Macro

Text Text Text

Help Help Help

4.8.2 Changes to the Librarian Utility
This section describes changes and restrictions to the Librarian utility on
OpenVMS I64 systems.

4.8.2.1 Librarian Defaults to Intel® Itanium® Architecture
There is no architecture switch for the OpenVMS I64 Librarian utility. When
used with the following qualifiers, the Librarian works on OpenVMS ELF object
and image libraries:

/OBJECT—Work on OpenVMS ELF object libraries (default)
/SHARE—Work on OpenVMS ELF shareable image libraries

The default library type created is an object library if no OBJECT and SHARE
qualifiers are specified.

4–6 Programming Features

Programming Features
4.8 Librarian Utility and Library Routines (I64 only)

4.8.2.2 No Support for /ALPHA and /VAX Qualifiers
The /ALPHA and /VAX qualifiers are not supported in the I64 Librarian utility.
The Librarian utility works on the following library types only:

MACRO
TEXT
HELP
ELF OBJECT
ELF SHARABLE IMAGE

4.8.2.3 Enhanced /REMOVE Qualifier
The /REMOVE qualifier has been enhanced for the I64 Librarian. The format
now allows you to specify the module of the instance of the symbol to be removed.

Requests the LIBRARY command to delete one or more entries from the global
symbol table in an object library.

/REMOVE=(symbol[:module] [, ...])

symbol

The symbol to be deleted from the global symbol table.

module

The module whose instance of the symbol is to be removed from the global
symbol table. With the support of UNIX-style weak symbols and ELF group
symbols, a symbol can have definitions from more than one module. This
extended syntax allows you to remove from the index a symbol of a specific
module without removing the symbol instances of all other modules from the
index.

Description

If you specify more than one symbol, separate the symbols with commas and
enclose the list in parentheses. Wildcard characters are allowed in the symbol
specification. To display the names of the deleted global symbols, you must also
specify the /LOG qualifier.

4.8.3 Changes to the Library (LBR) Routines
The following sections describe changes and restrictions to the Library routines
for OpenVMS I64 systems. All routines not listed here remain the same as on
Alpha systems (and as documented in the OpenVMS Utility Routines Manual).

4.8.3.1 New Library Types Added
Two new library types for the LBR$OPEN routine have been added:

LBR$C_TYP_ELFOBJ (9)—Represents an ELF object library
LBR$C_TYP_ELFSHSTB (10)—Represents an ELF shareable image library

In addition, the following library types for the LBR$OPEN Library routine are
not supported on OpenVMS I64:

LBR$C_TYP_OBJ (1)—Represents a VAX object library
LBR$C_TYP_SHSTB (5)—Represents a VAX shareable image library
LBR$C_TYP_EOBJ (7)—Represents an Alpha object library

Programming Features 4–7

Programming Features
4.8 Librarian Utility and Library Routines (I64 only)

LBR$C_TYP_ESHSTB (8)—Represents an Alpha shareable image library

Note

You cannot use these library types to create or open OpenVMS Alpha or
VAX object and shareable image libraries.

4.8.3.2 Accessing ELF Object Libraries
ELF object modules are inherently random access modules, whereas OpenVMS
Alpha objects, text modules, and so on, are sequential. To allow random access, a
new library routine was created to map the ELF object modules into process P2
space so that applications can make random access queries. To recover virtual
address space from this mapping another library routine was created to remove
this mapping. These new routines (LBR$MAP_MODULE and LBR$UNMAP_
MODULE) work only with ELF object libraries. These entry points are 64-bit
interfaces since they refer to P2 space.

Because of the random-access nature of ELF object files, the following operations
are not be allowed on ELF object libraries:

LBR$GET_RECORD
LBR$SET_LOCATE
LBR$SET_MOVE

Because inserting modules into the library is a sequential operation, LBR$PUT_
RECORD is allowed on ELF object libraries. Since the ELF object modules are
not segmented into records, the module’s on-disk size needs to be provided upon
the first call to LBR$PUT_RECORD when writing a module into the library.

The C code fragment in the following example illustrates how to use LBR$PUT_
RECORD to insert an object module:

bufdesc->dsc$a_pointer = &p0_buffer ;
bytes_to_transfer = module_size ;

while (bytes_to_transfer) {
transfer = MIN (bytes_to_transfer ,

ELBR$C_MAXRECSIZ) ;

bufdesc->dsc$w_length = transfer ;

status = lbr$put_record (library_index ,
& bufdesc ,
& txtrfa ,
module_size) ;

if ((status & 1) == 0)
break ;

bytes_to_transfer -= transfer ;
bufdesc->dsc$a_pointer += transfer ;
} ;

if ((status & 1) == 1)
status = lbr$put_end (library_index) ;

To avoid making several calls to LBR$PUT_RECORD, a new library routine,
LBR$PUT_MODULE, has been created (see Section 4.8.4).

4–8 Programming Features

Programming Features
4.8 Librarian Utility and Library Routines (I64 only)

4.8.4 New Librarian (LBR) Routines for ELF Object Libraries
This section describes the following four new Library routines for ELF object
libraries:

• LBR$LOOKUP_TYPE

• LBR$MAP_MODULE

• LBR$PUT_MODULE

• LBR$UNMAP_MODULE

Programming Features 4–9

Programming Features
LBR$LOOKUP_TYPE

LBR$LOOKUP_TYPE—Search the index for the key from a module
(RFA)

The LBR$LOOK_TYPE routine searches the index for the key from a particular
module (RFA) and returns that key’s type for that module.

Format

LBR$LOOKUP_TYPE library_index, key_name, txtrfa, ret_types

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The key_name argument is the address of the string descriptor pointing to the
key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that specifies the RFA of the
module header.

ret_types
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword to receive the symbol types found for the specified
module (txtrfa). The return type bits are:

4–10 Programming Features

Programming Features
LBR$LOOKUP_TYPE

LBR$M_SYM_NGG = 1
LBR$M_SYM_UXWK = 2
LBR$M_SYM_GG = 4
LBR$M_SYM_GUXWK = 8

Description

This routine searches the index for the key from a particular module (RFA) and
returns that key’s type for that module, if present. Otherwise, it returns LBR$_
KEYNOTFND.

Programming Features 4–11

Programming Features
LBR$MAP_MODULE

LBR$MAP_MODULE—Map a module

The LBR$MAP_MODULE routine maps a module into process P2 space.

Format

LBR$MAP_MODULE library_index, ret_va_addr, ret_mod_len, txtrfa

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

ret_va_addr
OpenVMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the routine returns the virtual address at which the routine mapped the library
module.

ret_mod_len
OpenVMS usage: byte_count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The address of a naturally aligned quadword into which the library routine
returns the module length.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that specifies the RFA of the
module header.

Description

This routine maps a module, with the given txtrfa, into process P2 memory space
and returns the virtual address where the module is mapped and the module
size.

Unlike other LBR services that use RMS services, LBR$MAP_MODULE also uses
system services. Because of this, the secondary status for error returns is placed
in LBR$$GL_SUBSTS. Use this to find further status when an error is returned.

4–12 Programming Features

Programming Features
LBR$PUT_MODULE

LBR$PUT_MODULE—Put module from memory into current library

The LBR$PUT_MODULE routine puts an entire module, with the module’s record
file address (RFA), from memory space into the current library.

Format

LBR$PUT_MODULE library_index, mod_addr, mod_len, txtrfa

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index return by the LBR$INI_CONTROL library service. The
library_index argument is the address of the longword that contains the index.

mod_addr
OpenVMS usage: address
type: quadword address
access: read only
mechanism: by 32- or 64-bit reference

The address from which the Library service will obtain the 64-bit address of
where the module is mapped in memory. The mod_addr argument is the 32-
or 64-bit virtual address of a naturally aligned quadword containing the virtual
address location of the module to write to the library.

mod_len
OpenVMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by 32- or 64-bit reference

The 64-bit virtual address of a naturally aligned quadword containing the length
of the module that the Library service is to write into the library.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of a 2-longword array receiving the RFA of the newly
created module header.

Description

The LBR$PUT_MODULE routine puts an entire module, with the module’s record
file address (RFA), from memory space into the current library. LBR$PUT_END
is not required when you write an entire module to the current library.

Programming Features 4–13

Programming Features
LBR$UNMAP_MODULE

LBR$UNMAP_MODULE—Unmap a module from process P2 space

The LBR$UNMAP_MODULE routine unmaps a module from process P2 space.

Format

LBR$UNMAP_MODULE library_index, txtrfa

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The module’s record file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that specifies the RFA of the
module header.

Description

Unmaps the module, with the record file address in txtrfa, from process P2
space. This releases the resources used to map the module.

Unlike other LBR services that use RMS services, LBR$UNMAP_MODULE also
uses system services. Because of this, the secondary status for error returns is
placed in LBR$GL_SUBSTS. Use this to find further status when an error is
returned.

4–14 Programming Features

Programming Features
LBR$UNMAP_MODULE

4.8.5 Extended Library (LBR) Routines for ELF Object Libraries
The Library routines described in the following section have changed for
OpenVMS I64 systems. Because of extra information that needs to be passed
due to the addition of ELF group symbols and UNIX-style weak definitions, the
Library routines have been extended to take additional parameters. Extensions
to the Library routines only affect ELF object and ELF shareable image libraries.

The following Library routines are listed in this section:

• LBR$DELETE_DATA

• LBR$DELETE_KEY

• LBR$GET_INDEX

• LBR$INSERT_KEY

• LBR$LOOKUP_KEY

• LBR$PUT_RECORD

• LBR$REPLACE_KEY

• LBR$SEARCH

Library routines not listed here remain the same for both OpenVMS I64 systems
and OpenVMS Alpha systems and are documented in the OpenVMS Utility
Routines Manual.

Programming Features 4–15

Programming Features
LBR$DELETE_DATA

LBR$DELETE_DATA—Delete module data

The LBR$DELETE_DATA routine deletes module data from the library.

Format

LBR$DELETE_DATA library_index, txtrfa, [flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Record’s file address (RFA) of the module header for the module you want to
delete. The txtrfa argument is the address of the 2-longword array that contains
the RFA. You can obtain the RFA of a module header by calling LBR$LOOKUP_
KEY or LBR$PUT_RECORD.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The contents of the flag are ignored. Its purpose is to indicate to this routine that
the application knows about the new index structure for ELF object and ELF
shareable image libraries.

4–16 Programming Features

Programming Features
LBR$DELETE_DATA

Description

If you want to delete a library module, you must first call LBR$DELETE_KEY
to delete all keys that point to it. If no library index keys are pointing to the
module header, LBR$DELETE_DATA deletes the module header and associated
data records; otherwise, this routine returns the error LBR$_STILLKEYS. Note
that other library routines may reuse data blocks that contain no data.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_STILLKEYS Keys in indexes still point at the module header.

Therefore, the specified module was not deleted.

Programming Features 4–17

Programming Features
LBR$DELETE_KEY

LBR$DELETE_KEY—Delete a key from the current index

The LBR$DELETE_KEY routine removes a key from the current index.

Format

LBR$DELETE_KEY library_index, key_name [, txtrfa] [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Key to be deleted from the library index. For libraries with binary keys, the
key_name argument is the address of an unsigned longword containing the key
number.

For libraries with ASCII keys, the key_name argument is the address of the
string descriptor pointing to the key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

4–18 Programming Features

Programming Features
LBR$DELETE_KEY

If present and if the flags argument is not present, the routine will scan for all
types of the key for the specified txtrfa and delete those entries.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present, this argument indicates that a particular type of the key or all types
of the key is to be deleted. The flags bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = 0x80000000 All symbols

If the txtrfa is not present or 0 (zero), the type indicated by flags is deleted. If
the txtrfa specifies a non-zero value, the entry of the type indicated, with the
txtrfa supplied, is removed. Note that only one type or all types may be specified.

Description

If LBR$DELETE_KEY finds the key specified by key_name in the current
index, it deletes the key. Note that if you want to delete a library module, you
should first use LBR$DELETE_KEY to delete all keys that point to it, then use
LBR$DELETE_DATA to delete the module’s header and associated data. You
cannot call LBR$DELETE_KEY from within the user-supplied routine specified
in LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.
LBR$_UPDIRTRAV Specified index update not valid in a user-

supplied routine specified in LBR$SEARCH
or LBR$GET_INDEX.

Programming Features 4–19

Programming Features
LBR$GET_INDEX

LBR$GET_INDEX—Call a routine for selected index keys

The LBR$GET_INDEX routine calls a user-supplied routine for selected keys in
an index.

Format

LBR$GET_INDEX library_index,index_number, routine_name [, match_desc] [,
flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

index_number
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of the library index. The index_number argument is the address of a
longword containing the index number. This is the index number associated with
the keys you want to use as input to the user-supplied routine.

routine_name
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

User-supplied routine called for each of the specified index keys. The routine_
name argument is the address of the procedure value for this user-supplied
routine.

LBR$GET_INDEX passes three arguments to the routine:

• A key name.

– For libraries with ASCII keys, the key_name argument is the address
of a string descriptor pointing to the key. Note that the string and the

4–20 Programming Features

Programming Features
LBR$GET_INDEX

string descriptor passed to the user routine are valid only for the duration
of that call. The string must be copied privately if you need it again for
more processing.

– For libraries with binary keys, the key_name argument is the address of
an unsigned longword containing the key number.

• The record’s file address (RFA) of the module’s header for this key name. The
RFA argument is the address of a 2-longword array that contains the RFA.

• The key’s type whose bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 1 UNIX-style weak symbol attributes
LBR$M_SYM_GROUP = 2 Group symbol attribute

The user routine must return a value to indicate success or failure. If the user
routine returns a false value (low bit = 0), LBR$GET_INDEX stops searching
the index and returns the status value of the user-specified routine to the calling
program.

The user routine cannot contain calls to either LBR$DELETE_KEY or
LBR$INSERT_KEY.

match_desc
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Key matching identifier. The match_desc argument is the address of a string
descriptor pointing to a string used to identify which keys result in calls to the
user-supplied routine. Wildcard characters are allowed in this string. If you
omit this argument, the user routine is called for every key in the index. The
match_desc argument is valid only for libraries that have ASCII keys.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present and non-zero, specifies the type, or all types, of the key provided. The
flag bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = 0x80000000 All symbols

The user routine will be provided the key’s type through an additional third
parameter.

Programming Features 4–21

Programming Features
LBR$GET_INDEX

Description

LBR$GET_INDEX searches through the specified index for keys that match the
argument match_desc. Each time it finds a match, it calls the user routine
specified by the routine_name argument. If you do not specify the match_desc
argument, it calls the user routine for every key in the index.

For example, if you call LBR$GET_INDEX on an object library with match_desc
equal to TR* and index_number set to 1 (module name table), then LBR$GET_
INDEX calls routine_name for each module whose name begins with TR.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLIDXNUM Specified index number not valid.
LBR$_LIBNOTOPN Specified library not open.
LBR$_NULIDX Specified library empty.

4–22 Programming Features

Programming Features
LBR$INSERT_KEY

LBR$INSERT_KEY—Insert a new key

The LBR$INSERT_KEY routine inserts a new key in the current library index.

Format

LBR$INSERT_KEY library_index ,key_name ,txtrfa, [flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL library routine. The
library_index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the new key you are inserting. If the library uses binary keys, the key_
name argument is the address of an unsigned longword containing the value of
the key.

If the library uses ASCII keys, the key_name argument is the address of a string
descriptor of the key with the following argument characteristics:

Argument
Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

Programming Features 4–23

Programming Features
LBR$INSERT_KEY

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

The record’s file address (RFA) of the module associated with the new key you are
inserting. The txtrfa argument is the address of a 2-longword array containing
the RFA. You can use the RFA returned by the first call to LBR$PUT_RECORD.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

If present, specifies the key’s type. The flag bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute

If this parameter is not present, the normal NonGroup-Global type is the assumed
type.

Description

You cannot call LBR$INSERT_KEY within the user-supplied routine specified in
LBR$SEARCH or LBR$GET_INDEX.

Condition Values Returned

LBR$_DUPKEY Index already contains the specified key.
LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA does not point to valid data.
LBR$_LIBNOTOPN Specified library not open.
LBR$_UPDURTRAV LBR$INSERT_KEY was called by the user-

defined routine specified in LBR$SEARCH or
LBR$GET_INDEX.

4–24 Programming Features

Programming Features
LBR$LOOKUP_KEY

LBR$LOOKUP_KEY—Look up a library key

The LBR$LOOKUP_KEY routine looks up a key in the library’s current index
and prepares to access the data in the module associated with the key.

Format

LBR$LOOKUP_KEY library_index ,key_name ,txtrfa, [flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Name of the library key. If the library uses binary keys, the key_name argument
is the address of the unsigned longword value of the key.

If the library uses ASCII keys, the key_name argument is the address of a string
descriptor for the key with the following argument characteristics:

Argument Characteristics Entry

OpenVMS usage char_string
type character string
access read only
mechanism by descriptor

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Programming Features 4–25

Programming Features
LBR$LOOKUP_KEY

The record’s file address (RFA) of the library module header. The txtrfa
argument is the address of the 2-longword array that receives the RFA of the
module header.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

If present and not zero, receives the type of key returned. The flag bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute

The key returned is the highest precedent definition type present.

Description

If LBR$LOOKUP_KEY finds the specified key, it initializes internal tables so you
can access the associated data.

This routine returns the RFA to the 2-longword array referenced by txtrfa.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA RFA obtained not valid.
LBR$_KEYNOTFND Specified key not found.
LBR$_LIBNOTOPN Specified library not open.

4–26 Programming Features

Programming Features
LBR$PUT_RECORD

LBR$PUT_RECORD—Write a data record

The LBR$PUT_RECORD routine writes a data record beginning at the next free
location in the library.

Format

LBR$PUT_RECORD library_index ,bufdes ,txtrfa [,mod_size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

bufdes
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record to be written to the library. The bufdes argument is the address of a
string descriptor pointing to the buffer containing the record. The maximum
record size for VAX libraries is symbolically defined as LBR$C_MAXRECSIZ;
for Alpha and I64 libraries, the symbolic maximum record size is ELBR$_
MAXRECSIZ.

txtrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record’s file address (RFA) of the module header. The txtrfa argument is the
address of a 2-longword array receiving the RFA of the newly created module
header upon the first call to LBR$PUT_RECORD.

Programming Features 4–27

Programming Features
LBR$PUT_RECORD

mod_size
OpenVMS usage: byte count
type: longword (unsigned)
access: read only
mechanism: by value

The value from mod_size is read on the first call to this routine only and ignored
otherwise. This value specifies the size of the module to be entered so that
contiguous space is allocated within the library for that module. This argument
is ignored for non-ELF object libraries and for data-reduced ELF object libraries.
The LBR$PUT_END routine is still required to terminate the byte stream and
close off the module.

Description

If this is the first call to LBR$PUT_RECORD, this routine first writes a module
header and returns its RFA to the 2-longword array pointed to by txtrfa.
LBR$PUT_RECORD then writes the supplied data record to the library. On
subsequent calls to LBR$PUT_RECORD, this routine writes the data record
beginning at the next free location in the library (after the previous record). The
last record written for the module should be followed by a call to LBR$PUT_END.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_LIBNOTOPN Specified library not open.

4–28 Programming Features

Programming Features
LBR$REPLACE_KEY

LBR$REPLACE_KEY—Replace a library key

The LBR$REPLACE_KEY routine modifies or inserts a key into the library.

Format

LBR$REPLACE_KEY library_index ,key_name ,oldrfa ,newrfa [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

key_name
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

For libraries with ASCII keys, the key_name argument is the address of a string
descriptor for the key.

For libraries with binary keys, the key_name argument is the address of an
unsigned longword value for the key.

oldrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Old record file address (RFA). The oldrfa argument is the address of a 2-
longword array containing the original RFA (returned by LBR$LOOKUP_KEY) of
the module header associated with the key you are replacing.

newrfa
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Programming Features 4–29

Programming Features
LBR$REPLACE_KEY

New RFA. The newrfa argument is the address of a 2-longword array containing
the RFA (returned by LBR$PUT_RECORD) of the module header associated with
the new key.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

If present, specifies the type of the key being replaced. The flag bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute

If this parameter is not present, NonGroup-Global is the assumed type. In this
case, all type lists are searched and the entries removed. The new symbol is
placed as the new NonGroup-Global definition with newrfa as the defining
module.

If this parameter is present, it represents the flags for the type of symbol being
replaced. The replacement is done in place without losing its position in the type
list. If the symbol does not exist when the call to this routine is made, the new
definition is placed at the end of the type list for the specified type.

Because there are now different symbol definition types, HP advises using the
LBR$DELETE_KEY routine followed by the LBR$INSERT_KEY routine, when
the old key and new key differ in definition type.

Description

If LBR$REPLACE_KEY does not find the key in the current index, it calls the
LBR$INSERT_KEY routine to insert the key. If LBR$REPLACE_KEY does find
the key, it modifies the key entry in the index so that it points to the new module
header.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_INVRFA Specified RFA not valid.
LBR$_LIBNOTOPN Specified library not open.

4–30 Programming Features

Programming Features
LBR$SEARCH

LBR$SEARCH—Search an Index

The LBR$SEARCH routine finds index keys that point to specified data.

Format

LBR$SEARCH library_index ,index_number ,rfa_to_find ,routine_name [, flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value.
Condition values that this routine can return are listed under Condition Values
Returned.

Arguments

library_index
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library control index returned by the LBR$INI_CONTROL routine. The library_
index argument is the address of the longword that contains the index.

index_number
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Library index number. The index_number argument is the address of a
longword containing the number of the index you want to search.

rfa_to_find
OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Record’s file address (RFA) of the module whose keys you are searching for. The
rfa_to_find argument is the address of a 2-longword array containing the RFA
(returned earlier by LBR$LOOKUP_KEY or LBR$PUT_RECORD) of the module
header.

routine_name
OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by reference

Programming Features 4–31

Programming Features
LBR$SEARCH

Name of a user-supplied routine to process the keys. The routine_name
argument is the address of the procedure value of a user-supplied routine to call
for each key entry containing the RFA (in other words, for each key that points to
the same module header).

This user-supplied routine cannot contain any calls to LBR$DELETE_KEY or
LBR$INSERT_KEY.

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

If present and nonzero, specifies the type, or all types, of the key provided. The
flag bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 0x1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 0x2 Group symbol attribute
LBR$M_SYM_ALL = 0x80000000 All symbols

The user routine is provided the symbol’s type through an additional third
parameter.

Description

Searches the library index for symbols with the given RFA and calls the supplied
routine with those symbols.

Use LBR$SEARCH to find index keys that point to the same module header.
Generally, in index number 1 (the module name table), just one key points to
any particular module; thus, you would probably use this routine only to search
library indexes where more than one key points to a module. For example, you
might call LBR$SEARCH to find all the symbols in the symbol index that are
associated with an object module in an object library.

If LBR$SEARCH finds an index key associated with the specified RFA, it calls a
user-supplied routine with three arguments:

• The key argument, which is the address of either of the following:

– A string descriptor for the key name (libraries with ASCII key names)

– An unsigned longword for the key value (libraries with binary keys)

• The RFA argument, which is the address of a 2-longword array containing the
RFA of the module header

• The key’s type whose flag bits are:

Flag Bits Description

LBR$M_SYM_WEAK = 1 UNIX-style weak symbol attribute
LBR$M_SYM_GROUP = 2 Group symbol attribute

4–32 Programming Features

Programming Features
LBR$SEARCH

The user routine must return a value to indicate success or failure. If the
specified user routine returns a false value (low bit = 0), then the index search
terminates.

Note that the key found by LBR$SEARCH is valid only during the call to the
user-supplied routine. If you want to use the key later, you must copy it.

Condition Values Returned

LBR$_ILLCTL Specified library control index not valid.
LBR$_ILLIDXNUM Specified library index number not valid.
LBR$_KEYNOTFND Library routine did not find any keys with the

specified RFA.
LBR$_LIBNOTOPN Specified library not open.

Programming Features 4–33

Programming Features
LBR$SEARCH

4.8.6 Library Format Changed due to New UNIX-Style Weak Symbols
Because of the requirements of the Intel C++ compiler, the library format has
been expanded to accommodate new UNIX-style weak symbols. Multiple modules
matching key names of new UNIX-style weak symbols can now exist in the same
library. The Librarian utility ignores the OpenVMS-style weak symbol definitions
as it did in the past.

UNIX-style weak symbol definitions behave in the same manner as weak transfer
addresses on OpenVMS; that is, their definitions are tentative. If a definition of a
stronger binding type is not seen during a link operation, a tentative definition is
designated as the definitive definition.

4.8.6.1 New ELF Type for Weak Symbols
A new Executable and Linkable Format (ELF) type was generated to distinguish
between the two types of weak symbol definitions.

For modules with ABI versions greater than or equal to 2:

• Type STB_WEAK represents the UNIX-style weak symbol (formerly, the
OpenVMS-style weak symbol definition for ABI Version 1 ELF format)

• Type STB_VMS_WEAK represents the OpenVMS-style weak symbol
definition.

The Librarian supports both the ELF ABI versions 1 and 2 of the object and
image file formats within the same library.

Note

The new library format (version 6.0) applies only to ELF object and
shareable image libraries. Other libraries will remain at the version 3.0
format.

4.8.6.2 Version 6.0 Library Index Format
HP recommends using the new Version 6.0 libraries.

However, note that with the new library index format, the LBR routines open
Version 3.0 and Version 4.0 ELF object and shareable image libraries in read-
only mode. You cannot modify the library with the LBR routines or with the
Librarian utility. Instead, you can convert your older version libraries to version
6.0 libraries using the following LIBRARY command:

$ LIBRARY/COMPRESS library-name

Using the Librarian utility to modify a Version 3.0, 4.0 or 5.0 ELF object or
shareable image library causes the Librarian to automatically convert your
library to a version 6.0 library.

Note

Once your library is at least version level 6.0 format, you cannot access
the library with some older versions of the Library routines or Librarian
utility. Doing so returns the LBR$_UNSUPLVL status, and causes the
Librarian utility to display the following message:

%LIBRAR-F-OPENIN, error opening library-name as input
-LBR-E-UNSUPLVL, unsupported library format level

4–34 Programming Features

Programming Features
LBR$SEARCH

4.8.6.3 New Group Section Symbols
Symbols may be relative to sections contained in an ELF entity called a GROUP.
These groups, and the symbols associated with them, behave in a similar fashion
as the new UNIX-style weak symbol definitions; that is, they are tentative
definitions. The library must now allow multiple symbol definitions in the
library’s symbol name index for these types of symbols.

4.8.6.4 Precedence Ordering Rules
The following list describes the symbol types for the combinations of GROUP
and UNIX-style WEAK attributes in order of their precedence from highest to
lowest. Within these symbol types, the ordering of symbol associations is by time
of insertion, from earliest to latest. This ordering is important because when the
OpenVMS I64 Linker asks for a symbol resolution from the library, it is given the
earliest inserted module instance of the symbol with the highest precedence.

• NonGroup-Global symbols –Symbols that are not members of an ELF group
and are not UNIX-style weak definitions. These symbols have the highest
precedence. There may be only one definition of this type. If the symbol of
this type already exists in the library, a subsequent symbol definition of this
type returns an error.

• Group Global symbols–Symbols that belong to an ELF section associated with
a group and are not UNIX-style weak definitions. Multiple definitions of this
type may exist in the library. These definitions are stored in a list, ordered by
insertion time. Note that if a module definition in the list is replaced, it does
not lose its current position in the list.

• UNIX-style weak symbols–Symbols that have a UNIX-style weak binding and
do not belong to a group. Multiple definitions of this type may exist in the
library. These definitions are stored in a list, ordered by insertion time. Note
that if a module definition in the list is replaced, it does not lose its current
position in the list.

• Group weak symbols—Symbols that behave as combined Group Global and
UNIX-style Weak attributes. Multiple definitions of this type may exist in the
library. These definitions are stored in a list, ordered by insertion time. Note
that if a module definition in the list is replaced, it does not lose its current
position in the list.

4.9 Linker Utility
Refer to Chapter 7 for information on the Linker utility.

4.10 HP OpenVMS Migration Software
HP OpenVMS Migration Software for Alpha to Integrity servers (OMSAI),
also known as the binary translator, facilitates migrating OpenVMS Alpha
applications to OpenVMS I64 systems by allowing you to translate the OpenVMS
Alpha images into equivalent OpenVMS I64 images. When the translated image
runs, the OpenVMS I64 transparently supports the image with an environment
that allows it to run as if it were on an OpenVMS Alpha system. OMSAI consists
of the Alpha Environment Software Translator (AEST) utility and a collection of
programs and command files designed to ease the translation process.

For information on the availability of this feature, check the following web site:

http://h71000.www7.hp.com/openvms/products/omsva/omsva.html

Programming Features 4–35

Programming Features
4.11 POSIX Threads Features

4.11 POSIX Threads Features
The following sections describe the new features added to the POSIX Threads
Library.

4.11.1 Lowercase Symbol Names for /NAMES=AS_IS Compilation
The POSIX threads library PTHREAD$RTL.EXE exports a number of symbol
names (for the pthread API routines, predefined exception objects, and so
forth). In prior releases, all letters in these symbols have been in uppercase. In
OpenVMS Version 8.2, new lowercase variants of all the symbols are provided in
addition to the existing uppercase symbols. These symbols facilitate use of the
/NAMES=AS_IS qualifier that is present in a number of HP compiler products.

4.11.2 Support for Process-Shared Mutexes and Condition Variables
The POSIX Threads Library now supports process-shared mutexes and condition
variables. Until now, these were supported only on UNIX systems. (Note,
process-shared read-write locks are still supported only on UNIX systems.) The
following pthread routines are now supported on OpenVMS Version 8.2:

• pthread_condattr_getpshared

• pthread_condattr_setpshared

• pthread_mutexattr_getpshared

• pthread_mutexattr_setpshared

4.11.3 SET and SHOW Commands Enhanced (I64 Only)
The DCL commands SET and SHOW have been enhanced to allow a user to
query and change two main-image header flags, UPCALLS and MKTHREADS
on OpenVMS I64 systems. In addition, you can use the SET IMAGE and SHOW
IMAGE commands on both Alpha and I64 systems to set and show only I64
images.

The DCL command THREADCP continues to be available on OpenVMS Alpha
systems.

4.11.4 New Routine Added to Thread Independent Services API
A new routine, tis_mutex_init_type, has been added to the Thread Independent
Services API (TIS). This routine is similar to the existing routine named
tis_mutex_init.

4–36 Programming Features

Programming Features
tis_mutex_init_type

tis_mutex_init_type

Initializes the specified mutex object, establishing the mutex’s type and name as
specified by the caller.

Format

tis_mutex_init_type (mutex,type,name):

Argument Data Type Access

mutex opaque pthread_mutex_t write
type integer read
name char read

C Binding

#include <tis.h>

int
tis_mutex_init_type (

pthread_mutex_t *mutex,
int type,
const char *name);

Arguments

mutex
Pointer to a mutex object (passed by reference) to be initialized.

type
Value for the mutex type attribute. The type argument specifies the type of
mutex that will be created. Valid values are:

• PTHREAD_MUTEX_NORMAL

• PTHREAD_MUTEX_DEFAULT

• PTHREAD_MUTEX_RECURSIVE

• PTHREAD_MUTEX_ERRORCHECK

name
Textual name to be associated with the mutex.

Description

This routine initializes a mutex object with the DECthreads default mutex
attributes, except for mutex type and name, which are specified by the caller. A
mutex is a synchronization object that allows multiple threads to serialize their
access to shared data.

The mutex object is initialized and set to the unlocked state. Refer to the Guide
to POSIX Threads Library for information on the types of mutexes.

Programming Features 4–37

Programming Features
tis_mutex_init_type

The mutex name argument is a C language string and provides an identifier that
is a meaningful to a person debugging a DECthreads multithreaded application.
The name string should be a string literal, or other storage that will remain for
the life of the mutex. The contents of the string are not copied as part of mutex
initialization.

Return Values

If an error condition occurs, this routine returns an integer value indicating the type of error, the
mutex is not initialized, and the contents of mutex are undefined. Possible return values are as
follows:

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to

initialize a mutex.
[EBUSY] The implementation has detected an attempt to

reinitialize mutex (a previously initialized, but
not yet destroyed, mutex).

[EINVAL] The value specified by mutex is not a valid
mutex, or the type specified by type is not a valid
mutex type.

[ENOMEM] Insufficient memory exists to initialize the
mutex.

[EPERM] The caller does not have privileges to perform
this.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_lock()
tis_mutex_trylock()
tis_mutex_unlock()

4–38 Programming Features

Programming Features
4.12 New RTL LIB Routines

4.12 New RTL LIB Routines
Table 4–2 lists the new routines provided with OpenVMS Version 8.2. The
routines apply to both OpenVMS Alpha and OpenVMS I64 systems unless
otherwise specified.

Table 4–2 RTL LIB Routines

Routine Description

LIB$CVTS_FROM_INTERNAL_TIME Convert internal time to external time (S-
floating value).

LIB$CVTS_TO_INTERNAL_TIME Convert external time to internal time (S-
floating value).

LIB$EMODS Perform extended multiply and integerize for
S-floating values.

LIB$EMODT Perform extended multiply and integerize for
T-floating values.

LIB$I64_CREATE_INVO_CONTEXT Allocate and initialize an invocation context
block. (I64 only)

LIB$I64_FREE_INVO_CONTEXT Deallocate an invocation context block. (I64
only)

LIB$I64_GET_INVO_CONTEXT Get the invocation context of any active
procedure. (I64 only)

LIB$I64_GET_CURR_INVO_CONTEXT Gets the current invocation context of any
active procedure. (I64 only)

LIB$I64_GET_CURR_INVO_HANDLE Get current invocation handle. (I64 only)

LIB$I64_GET_FR Get floating-point register value. (I64 only)

LIB$I64_GET_GR Get general register value. (I64 only)

LIB$I64_GET_INVO_HANDLE Get invocation handle. (I64 only)

LIB$I64_GET_PREV_INVO_CONTEXT Get previous invocation context. (I64 only)

LIB$I64_GET_PREV_INVO_HANDLE Get previous invocation handle. (I64 only)

LIB$I64_GET_UNWIND_HANDLER_FV Given a pc_value, find the function value
(address of the procedure descriptor) for the
condition handler, if present, and write it to
handler_fv. (I64 only)

LIB$I64_INIT_INVO_CONTEXT Initialize an invocation context block that has
already been allocated. (I64 only)

LIB$GET_UIB_INFO Return information from the unwind
information block.

LIB$I64_GET_GR Get general register value. (I64 only)

LIB$I64_GET_UNWIND_LSDA Find Address of Unwind Information Block
Language-Specific Data. (I64 only)

LIB$I64_GET_UNWIND_OSSD Find address of the unwind information block
operating system-specific data area. (I64 only)

LIB$I64_IS_AST_DISPATCH_FRAME Determine whether a given PC value
represents an AST. (I64 only)

(continued on next page)

Programming Features 4–39

Programming Features
4.12 New RTL LIB Routines

Table 4–2 (Cont.) RTL LIB Routines

Routine Description

LIB$I64_IS_EXC_DISPATCH_FRAME Determine whether a given PC value
represents an exception dispatch frame. I64
only.

LIB$I64_PREV_INVO_END Free memory used to process unwind
descriptors. (I64 only)

LIB$I64_PUT_INVO_REGISTERS Put invocation registers.

LIB$I64_SET_FR Write context of invocation context block. (I64
only)

LIB$I64_SET_GR Write invocation block general register value.
(I64 only)

LIB$I64_SET_PC Write pc_copy value of invocation context
block. (I64 only)

LIB$LOCK_IMAGE Lock an image in the process working set.

LIB$MULTS_DELTA_TIME Multiply a delta time by an S-floating scalar.

LIB$POLYS Evaluate Polynomials routine (S-floating
values).

LIB$POLYT Evaluate polynomials (T-floating values).

LIB$UNLOCK_IMAGE Unlock an image from the process working
set.

See the HP OpenVMS RTL Library (LIB$) Manual for more information.

4.12.1 Change to LIB$GETDVI routine (I64 only)
A new argument, pathname, has been added to the RTL LIB routine
LIB$GETDVI for use on OpenVMS I64 systems. See the HP OpenVMS RTL
Library (LIB$) Manual for more information.

4.13 New RTL OTS Routines
Table 4–3 lists the new OTS routines. All routines are provided for both
OpenVMS Alpha and OpenVMS I64 systems unless otherwise specified.

Table 4–3 RTL OTS Routines

Routine Description

OTS$CNVOUT_S Convert an S-floating value to a character string.

OTS$CNVOUT_T Convert a T-floating value to a character string.

OTS$CVT_T_S Convert numeric text to an S-floating value.

OTS$CVT_T_T Convert numeric text to a T-floating value.

OTS$DIVCS_R3 Return an S-floating complex result of a division on
complex numbers.

OTS$DIVCT_R3 Return a T-floating complex result of a division on
complex numbers.

(continued on next page)

4–40 Programming Features

Programming Features
4.13 New RTL OTS Routines

Table 4–3 (Cont.) RTL OTS Routines

Routine Description

OTS$MULCT_R3 Calculate the complex product of two complex values;
returns a T-floating complex number.

OTS$POWCSCS_R3 Raise a complex base to an S-floating complex
exponent.

OTS$POWCSCT_R3 Raise a complex base to a T-floating complex exponent.

OTS$POWCSJ return the complex result of raising an S-floating
complex base to an integer exponent.

OTS$POWCTJ return the complex result of raising a T-floating
complex base to an integer exponent.

OTS$POWSJ Raise an S-floating base to a longword exponent.

OTS$POWSLU Raise an S-floating-point base to an unsigned
longword.

OTS$POWSS Raise an S-floating base to an S-floating or longword
integer exponent.

OTS$POWTLU Raise a T-floating-point base to an unsigned longword.

OTS$POWTJ Raise an T-floating base to a longword integer
exponent.

OTS$POWTT Raise a T-floating base to a T-floating or longword
integer exponent.

For more information, see the HP OpenVMS RTL General Purpose (OTS$)
Manual.

4.14 Patch Utility Now Available on OpenVMS Alpha and OpenVMS
I64

The Patch utility, formerly only on OpenVMS VAX systems, is now available on
OpenVMS Alpha and OpenVMS I64 systems. By default, PATCH/ABSOLUTE is
involved, which patches a file at absolute virtual addresses. For more information
about PATCH/ABSOLUTE and related parameters, see the HP OpenVMS DCL
Dictionary. Additional documentation on the Patch utility can be found in the
OpenVMS VAX Patch Utility Manual, available on the OpenVMS Documentation
web site under Archived Manuals, or in online Help inside the Patch utility.

4.15 New and Revised System Services
Table 4–4 summarizes system services that are new in OpenVMS Version 8.2.

Table 4–4 New System Services

System Service Description

SYS$CLEAR_UNWIND_TABLE Clears unwind table (UT) information.

SYS$GET_UNWIND_ENTRY_
INFO

On I64 systems, gets fixed-up unwind entry
information.

SYS$GOTO_UNWIND_64 On Alpha and I64 systems, unwinds the call stack.

(continued on next page)

Programming Features 4–41

Programming Features
4.15 New and Revised System Services

Table 4–4 (Cont.) New System Services

System Service Description

SYS$IEEE_SET_PRECISION_
MODE

On I64 systems, modifies the IEEE precision mode
and, optionally, returns the previous value.

SYS$IEEE_SET_ROUNDING_
MODE

On I64 systems, modifies the IEEE rounding mode
and, optionally, returns the previous value.

SYS$RPCC_64 On Alpha and I64 systems, returns a 64-bit, process-
based, high-resolution time counter.

SYS$SET_RETURN_VALUE On Alpha and I64 systems, sets the return values or
condition codes in the Mechanism Array, independent
of the architecture.

SYS$SET_UNWIND_TABLE On I64 systems, registers or extends unwind table
(UT) information.

For more detailed information, refer to the HP OpenVMS System Services
Reference Manual. For additional information about the UNWIND system service
routines, refer to the HP OpenVMS Calling Standard.

Table 4–5 summarizes system services that have been revised in OpenVMS
Version 8.2.

Table 4–5 Revised System Services

System Service Description

SYS$CHECK_FEN On I64 systems, the bitmask has two bits: bit 0 for
the low floating-point bank and bit 1 for the high
floating-point bank.

SYS$CREATE_GPFN SEC$M_UNCACHED flag applies only to I64 systems.

SYS$CRELNT LNM$M_NO_ALIAS does not apply to clusterwide
logical name tables.

SYS$CREMBX Value of prmflg changed.

SYS$CRMPSC_GDZRO_64 SS$_INSF_SHM_REG condition value added.

SYS$CRMPSC_GPFN_64 Revised to reflect new behaviors of Alpha and I64
systems.

SYS$CRMPSC_PFN_64 SEC$M_UNCACHED flag applies only to I64 systems.

SYS$DEQ Extended Lock Value Block information added.

SYS$ENQ Extended Lock Value Block information added.

SYS$GETLKI Extended Lock Value Block information added.

(continued on next page)

4–42 Programming Features

Programming Features
4.15 New and Revised System Services

Table 4–5 (Cont.) Revised System Services

System Service Description

SYS$GETDVI The following new item codes have been added:

ACCESSTIMES_RECORDED
AVAILABLE_PATH_COUNT
ERASE_ON_DELETE
ERROR_RESET_TIME
HARDLINKS_SUPPORTED
MOUNT_TIME
MOUNTVER_ELIGIBLE
MPDEV_AUTO_PATH_SW_CNT
MPDEV_MAN_PATH_SW_CNT
MVSUPMSG
NOCACHE_ON_VOLUME
NOHIGHWATER
NOSHARE_MOUNTED
ODS2_SUBSET0
ODS5
PATH_AVAILABLE
PATH_NOT_RESPONDING
PATH_POLL_ENABLED
PATH_SWITCH_FROM_TIME
PATH_SWITCH_TO_TIME
PATH_USER_DISABLED
PROT_SUBSYSTEM_ENABLED
SCSI_DEVICE_FIRMWARE_REV
TOTAL_PATH_COUNT
VOLUME_EXTEND_QUANTITY
VOLUME_MOUNT_GROUP
VOLUME_MOUNT_SYS
WRITETHRU_CACHE_ENABLED

SYS$GETRMI Many buffer length fields changed to 8 bytes.

SYS$IEEE_SET_FP_CONTROL Revised to reflect new behaviors of Alpha and I64
systems.

SYS$INIT_VOL New item codes added: INIT$_ERASE_ON_DELETE
and INIT$_ERASE_ON_INIT, INIT$_VOLUME_
LIMIT

SYS$LKWSET Revised to reflect new behaviors of Alpha and I64
systems.

SYS$LKWSET_64 Revised to reflect new behaviors of Alpha and I64
systems.

SYS$MGBLSC_GPFN_64 SEC$M_UNCACHED flag ignored on I64 systems.

SYS$MOUNT Item code MNT_DENSITY revised.

SYS$SETFLT Small change made to FLT$M_EXECUTABLE.

SYS$SETFLT_64 Small change made to FLT$M_EXECUTABLE.

SYS$SETRWN Added system resources and process quotas are
affected by resource wait mode.

SYS$SET_DEVICE Added new condition values returned for SDV$_MP_
SWITCH_PATH.

SYS$ULWSET Revised to reflect new behaviors of Alpha and I64
systems.

(continued on next page)

Programming Features 4–43

Programming Features
4.15 New and Revised System Services

Table 4–5 (Cont.) Revised System Services

System Service Description

SYS$ULWSET_64 Revised to reflect new behaviors of Alpha and I64
systems.

Refer to the descriptions in the HP OpenVMS System Services Reference Manual
for more information.

4.16 Time Zone Information Compiler (zic) Updates
New time indicators are added for AT field in Rule line. The letter "u" (or "g" or
"z") indicates the time in AT field as UTC. The following is a detailed description
of zic:

AT — Gives the time of day at which the rule takes effect. Recognized forms
include:

2 — time in hours
2:00 — time in hours and minutes
15:00 — 24-hour format time (for times after noon)
1:28:14 — time in hours, minutes, and seconds
minus sign (-) — equivalent to 0

Hour 0 is midnight at the start of the day, and hour 24 is midnight at the end of
the day. Any of these forms may be followed by the letter w if the given time is
local "wall clock" time, the letter s if the given time is local "standard" time, or
the letter u (or g or z) if the given time is universal time. In the absence of an
indicator, wall clock time is assumed.

4.17 Traceback Facility
The Traceback facility for I64 systems includes a new symbolize routine,
TBK$I64_SYMBOLIZE. This routine, which can be invoked at any time, allows
an application to process a condition invoked by an exception.

The following information describes this routine.

TBK$I64_SYMBOLIZE
The Traceback symbolize routine, TBK$I64_SYMBOLIZE, allows an application
program to process an exception condition.

Calling Convention
#pragma pointer_size save
#pragma pointer_size 64

int32 tbk$i64_symbolize(
uint64 const pc,
struct dsc64$descriptor * const filename_desc,
struct dsc64$descriptor * const library_module_desc,
uint64 * const record_number,
struct dsc64$descriptor * const image_desc,
struct dsc64$descriptor * const module_desc,
struct dsc64$descriptor * const routine_desc,
uint64 * const listing_lineno,
uint64 * const rel_pc);

#pragma pointer_size restore

4–44 Programming Features

Programming Features
4.17 Traceback Facility

Input

pc Executable instruction to be "tracebacked" by value in
process space.

Output

filename_desc String descriptor in which to return the name of the
file containing the code, by reference.

library_module_desc String descriptor in which to return the name of the
text library file containing the code, by reference.
Returned only if applicable.

record_number A 64-bit unsigned integer in which to return the record
number (that is, record number n specifies the nth line
of the file specified by filename_desc), by reference.

image_desc String descriptor in which to return the image name,
by reference.

module_desc String descriptor in which to return the module name,
by reference.

routine_desc String descriptor in which to return the routine name,
by reference.

listing_lineno A 64-bit unsigned integer in which to write the
compiler listing line number, by reference.

rel_pc A 64-bit unsigned integer in which to write the relative
PC value, by reference.

Return Value
TBK$_NORMAL is returned on successful completion Other unsuccessful
completion codes may be returned if an error occurs.

Description
The Traceback facility for I64 systems includes a new symbolize routine,
TBK$I64_SYMBOLIZE. This routine, which can be invoked at any time, allows
an application to process a condition invoked by an exception in an alternate
way. Normal traceback processing generates "traceback stack" information onto
SYS$OUTPUT (that is, a series of pc values, one for each stack level). If an
application wants to independently process traceback information, it can invoke
the traceback handling directly.

An application can specify any executable pc value within its image address
space and be returned any or all of the return arguments described in the Output
section, above. The return information specifies the location of listing line and/or
record number of the source code line that generated the object code that includes
the pc value specified. This information can also specify the image name, the
module name, and the routine name. A relative pc value, which specifies either
the image relative or module relative value, is also returned.

The ability for Traceback to return the values requested is dependent upon
whether traceback information was requested during the compilation and linker
steps of image generation.

Programming Features 4–45

Programming Features
4.17 Traceback Facility

Notes

Specifying any output argument (value) as zero causes the argument to be
ignored.

To link an application that refers to TBK$I64_SYMBOLIZE, include the
following within a linker option file:

SYS$SHARE:TRACE.EXE/shareable

4.18 XDELTA New Features
The following list summarizes new features of the OpenVMS XDELTA Debugger
running on OpenVMS Alpha and I64 systems:

• New commands: ;D and ;T

• Better symbolization

• XDELTA supports access to the following Itanium® registers:

General registers: R0 through R127

Floating registers: FP0 through FP127

Application registers: AR0 through AR127

Branch registers: BR0 through BR7

Control registers: CR0 through CR63

Predicate registers: P0 through P63

Miscellaneous registers: PC, PS, CFM

Software implementation of Alpha hardware registers

For more information, see the HP OpenVMS Delta/XDelta Debugger Manual.

4–46 Programming Features

5
Associated Products Features

This chapter describes significant new features of OpenVMS operating system
associated products. For a listing and directory information about the OpenVMS
associated products, refer to the Read Before Installing letter appropriate for your
operating system.

5.1 ATI RADEON 7500 Graphics
OpenVMS Version 8.2 will provide support for 2D multi-head and 3D graphics
on Integrity servers after the initial release of the operating system. Support is
planned to be available in the first half of 2005 and will be announced on the
OpenVMS Web site:

http://h71000.www7.hp.com/new/index.html

5.2 Common Data Security Architecture (CDSA) Now Supports a
New Encryption Type

CDSA now supports a new encryption type as of CDSA Version 2.1 (OpenVMS
Version 8.2). The Advanced Encryption Standard (AES) is now available as one
of the standard Encryption types supported by the CDSA SSLeay Cryptographic
Service Provider.

The following describes a simple AES encryption/decryption program that uses
CDSA, along with the necessary files to build it on OpenVMS. The program
consists of two source files (AES.C and DO_AES.C), and two build files (BUILD_
AES.COM and AES.OPT). These files can be found in the CDSA AES example
directory in SYS$COMMON:[SYSHLP.EXAMPLES.CDSA.AES].

You must initialize CDSA before this program is run. This needs to be done on a
one-time basis, by executing the following command:

$ @SYS$STARTUP:CDSA$INITIALIZE

To build the AES example program, copy the example files into a local build area
and run the BUILD_AES command file, as follows:

$ copy SYS$SYSROOT:[SYSHLP.EXAMPLES.CDSA.AES]*.* local_build_area
$ SET DEF local_build_area
$ @AES_BUILD

You can run the resulting AES.EXE file as a foreign command by specifying the
following:

$ AES :== $ local_build_area AES.EXE

The program can then be run with the following options:

-e : encrypt with supplied key (requires -k switch)
-d : decrypt with supplied key (requires -k switch)

Associated Products Features 5–1

Associated Products Features
5.2 Common Data Security Architecture (CDSA) Now Supports a New Encryption Type

-h : specifies that the supplied key is a 32,48, or 64 typed character
hexadecimal number
-k key : use key "key" (single quotes are necessary if used with -h)

To encrypt MYFILE.TXT using an ASCII key with the AES example program,
issue the following command:

$ aes -e -k "xyzzy" MYFILE.TXT MYFILE.AES

To decrypt the same file, you issue this command:

$ aes -d -k "xyzzy" MYFILE.AES MYFILE.TXT

To encrypt/decrypt using a hexadecimal (hex) key, use a key length of exactly 64
typed characters (32 hex bytes) and the -h switch, as follows:

$ aes -e -k 0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqr -h MYFILE.TXT MYFILE.AES
$ aes -d -k 0123456789abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmnopqr -h MYFILE.AES MYFILE.TXT

Note

For a hexadecimal key:

• 64 characters are used for 256-bit AES (32 hex bytes, 256 bits). (This
example is included in CDSA.)

• 48 characters are used for 192-bit AES (24 hex bytes, 192 bits).

• 32 characters are used for 128-bit AES (16 hex bytes, 128 bits).

To change this example to a 128- or 192-bit AES example, do following:

1. Edit aes.c

2. Change the key size from key[32] to:

key[24] for 192-bit AES
key[16] for 128-bit AES

3. Edit do_aes

4. Change key.KeyHeader.AlgorithmId = CSSM_ALGID_EVP_AES_256; to:

key.KeyHeader.AlgorithmId = CSSM_ALGID_EVP_AES_192; for 192-bit AES
key.KeyHeader.AlgorithmId = CSSM_ALGID_EVP_AES_128; for 128-bit
AES

5. Rebuild

5.3 Kerberos for OpenVMS
Kerberos Version 2.1 for OpenVMS is based on MIT Kerberos V5 Release 1.2.6
with CERT patches up to Release 1.2.8. Support for both Kerberos clients and
servers is provided on OpenVMS I64, OpenVMS Alpha, and OpenVMS VAX.

New features in Kerberos for OpenVMS Version 2.1 include the ktutil command,
which invokes a menu from which an administrator can read, write, or edit
entries in a Kerberos V5 keytab or V4 srvtab file.

Kerberos performs authentication as a trusted third-party authentication service
by using conventional (shared secret key) cryptography. Kerberos provides a
means of verifying the identities of principals, without relying on authentication
by the host operating system, without basing trust on host addresses, without

5–2 Associated Products Features

Associated Products Features
5.3 Kerberos for OpenVMS

requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and
inserted at will. After a client and server have used Kerberos to prove their
identity, they can also encrypt all of their communications to assure privacy and
data integrity.

For more detailed information, refer to HP Open Source Security for OpenVMS,
Volume 3: Kerberos.

For information about downloading the latest version of Kerberos for OpenVMS,
see the following World Wide Web address:

http://h71000.www7.hp.com/openvms/products/kerberos/

For additional information about Kerberos, see the MIT Kerberos web site at the
following World Wide Web address:

http://web.mit.edu/kerberos/www/

5.4 HP SSL for OpenVMS
HP SSL Version 1.2 is based on OpenSSL 0.9.7d. (Previous versions of HP
SSL were based on OpenSSL 0.9.6g.) This release includes fixes to security
vulnerabilities reported on September 30 and November 4, 2003, and March 17,
2004 at http://www.openssl.org/news/.

Support for HP SSL is provided on OpenVMS I64, OpenVMS Alpha, and
OpenVMS VAX.

New features in HP SSL Version 1.2 include OCSP (Online Certificate Status
Protocol), AES (Advanced Encryption Standard), and Elliptic Curve cryptography.
These features are described in the following list:

• OCSP (Online Certificate Status Protocol)

The Online Certificate Status Protocol allows an application to more
quickly determine the status of a certificate than it can by using Certificate
Revocation Lists (CRLs). This is achieved by allowing the server or client
application to request certificate status information from a Validation
Authority (VA) in real time, rather than relying on CRL information that
is issued from a Certificate Authority (CA) on a periodic basis (weekly or
monthly). The VA and CA can be the same entity, but are not required to be.

• AES (Advanced Encryption Standard)

The Advanced Encryption Standard (AES) is a new Federal Information
Processing Standard (FIPS) Publication that specifies a cryptographic
algorithm for use by U.S. Government organizations to protect sensitive
(unclassified) information. The AES is also widely used on a voluntary basis
by organizations, institutions, and individuals outside of the U.S. Government
and outside of the United States. Rijndael has been selected as the AES
algorithm.

The AES was developed to replace DES, but Triple DES will remain an
approved algorithm (for U.S. Government use) for the foreseeable future.
Single DES is being phased out of use.

The AES will specify three key sizes: 128, 192 and 256 bits. Assuming that
one could build a machine that could recover a 56-bit DES key in a second, it
would take that machine approximately 149 trillion years to crack a 128-bit
AES key.

Associated Products Features 5–3

Associated Products Features
5.4 HP SSL for OpenVMS

• Elliptic Curve cryptography

Elliptic curves are simple functions that can be drawn as gently looping lines
in the (x,y) plane. Elliptic curves can provide versions of public-key methods
that, in some cases, are faster and use smaller keys, while providing an
equivalent level of security. Their advantage comes from using a different
kind of mathematical group for public-key arithmetic.

RSA, SPEKE, Diffie-Hellman, and many other public-key methods can easily
work with elliptic curves.

Secure Sockets Layer (SSL) is the open standard security protocol for the secure
transfer of sensitive information over the Internet. HP SSL addresses these three
fundamental security concerns about communication over the Internet and other
TCP/IP networks:

• SSL server authentication

Allows a user to confirm a server’s identity. SSL-enabled client software
can use standard techniques of public-key cryptography to check whether
a server’s certificate and public ID are valid and have been issued by a
Certificate Authority (CA) listed in the client’s list of trusted CAs. Server
authentication is used, for example, when a PC user is sending a credit card
number to make a purchase on the web and wants to check the receiving
server’s identity.

• SSL client authentication

Allows a server to confirm a user’s identity. Using the same techniques
as those used for server authentication, SSL-enabled server software can
check whether a client’s certificate and public ID are valid and have been
issued by a Certificate Authority (CA) listed in the server’s list of trusted
CAs. Client authentication is used, for example, when a bank is sending
confidential financial information to a customer and wants to check the
recipient’s identity.

• An encrypted SSL connection

Requires all information sent between a client and a server to be encrypted
by the sending software and decrypted by the receiving software, thereby
providing a high degree of confidentiality. Confidentiality is important for
both parties to any private transaction. In addition, all data sent over an
encrypted SSL connection is protected with a mechanism that automatically
detects whether data has been altered in transit.

For more detailed information, refer to HP Open Source Security for OpenVMS,
Volume 2: HP SSL for OpenVMS.

For information about downloading the latest version of HP SSL for OpenVMS,
see the following World Wide Web address:

http://h71000.www7.hp.com/openvms/products/ssl/

For additional information about OpenSSL, see the OpenSSL web site at the
following World Wide Web address:

http://www.openssl.org/

5–4 Associated Products Features

Associated Products Features
5.5 HP TCP/IP Services for OpenVMS Version 5.5

5.5 HP TCP/IP Services for OpenVMS Version 5.5
This release of OpenVMS includes a new version of TCP/IP Services for OpenVMS
that supports I64 systems.

TCP/IP Services Version 5.5 is supported only with this release of OpenVMS and
runs on both Alpha and I64 systems. VAX systems continue to be supported by
TCP/IP Services Version 5.3. Note, in a cluster, use the corresponding version
of TCP/IP that is appropriate for your version of the operating system. For
information on cluster configurations and warranted pair support, refer to the
Guidelines for OpenVMS Cluster Configurations.

The following new features are included in Version 5.5:

Libpcap Library and
TCPDUMP updates

– Support for libpcap API
– Support for TCPDUMP Version 3.8.3

IPv6 Configuration
Support and
Enhancements

– The IPv6 configuration procedure has been enhanced to
provide more configuration options.
– FailSAFE IP support for IPv6, including new ifconfig
commands
– SSH support for IPv6
– PATHWORKS Internet Protocol (PWIP) driver support for
IPv6

Support for Network
Time Protocol (NTP)

– Supports NTP Version 4.2.0. Retains backward compatibility
with NTP Version 3 and NTP Version 2, but not with NTP
Version 1.
– Provides increased security over NTP Version 1.

For further information about the enhancements and corrections in TCP/IP
Services V5.5, refer to the TCP/IP Services V5.5 Release Notes.

Associated Products Features 5–5

6
Host-Based Minimerge (HBMM) in Volume

Shadowing for OpenVMS

This chapter provides the following information:

• HBMM configuration requirements

• HBMM restrictions

• HBMM in a mixed-version or mixed-architecture OpenVMS Cluster system

• Overview of full merge and minimerge operations

• Overview of host-based minimerge (HBMM)

• HBMM policy specification syntax

• Rules governing HBMM policies

• Guidelines for establishing HBMM policies

• Configuring and managing HBMM

• New system parameters that affect HBMM

• Use of /DEMAND_MERGE when HBMM is enabled

• Prioritizing merge and copy operations

• Visible impact of transient state events

In addition to the HBMM features, new capabilities for prioritizing merge and
copy operations, as described in Section 6.12, are provided.

6.1 HBMM Configuration Requirements
The configuration requirements for enabling HBMM on an OpenVMS Cluster
system are:

• In a cluster of Alpha and HP Integrity server systems, all HP Integrity server
systems must be running OpenVMS I64 Version 8.2 and all OpenVMS Alpha
systems must be running OpenVMS Version 7.3-2 or Version 8.2.

• In a cluster of Alpha and VAX systems, Alpha systems must be running
OpenVMS Alpha Version 7.3-2 or higher and all VAX systems must be
running OpenVMS VAX Version 7.3.

For supported OpenVMS Cluster configurations of Alpha and HP Integrity
server systems, refer to HP OpenVMS Version 8.2 New Features and
Documentation Overview.

• Sufficient available memory to support bitmaps, as described in Section 6.5.1.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–1

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.2 HBMM Restrictions

6.2 HBMM Restrictions
The following restrictions pertain to the configuration and operation of HBMM in
an OpenVMS Cluster system.

6.2.1 Cluster Configuration Restrictions
An HBMM enabled shadow set can only be mounted on HBMM capable systems.
However, systems running versions of OpenVMS that support write bitmaps can
coexist in a cluster with systems that support HBMM, but these systems cannot
mount an HBMM enabled shadow set. The following OpenVMS versions support
write bitmaps but do not include HBMM support:

• OpenVMS VAX Version 7.3 systems

• OpenVMS Alpha Versions 7.2-2 through Version 7.3-2. (Version 7.3-2 supports
HBMM if the Volume Shadowing HBMM kit is installed.)

For OpenVMS Version 8.2, the earliest version of OpenVMS Alpha that is
supported in a migration or warranted configuration is OpenVMS Alpha Version
7.3-2.

Caution

The inclusion in a cluster of a system that does not support write bitmaps
turns off HBMM in the cluster and deletes all existing HBMM and
minicopy bitmaps.

6.2.2 Shadow Set Member Restrictions
HBMM can be used with all disks that are supported by Volume Shadowing for
OpenVMS except disks on HSJ, HSC, and HSD controllers.

6.2.3 System Parameter Restrictions
Host-based minimerge operations can only take place on a system that has an
HBMM master bitmap for that shadow set. If you set the system parameter
SHADOW_MAX_COPY to zero on all the systems that have a master bitmap for
that shadow set, HBMM cannot occur on any of those systems.

Furthermore, full merges will not occur on any of the other systems (that lack a
master bitmap) on which the shadow set is mounted, even if SHADOW_MAX_
COPY is set to 1 or higher.

If a merge is required on a shadow set that is mounted on some systems that
have HBMM master bitmaps and on some systems that do not, then the systems
that do not have an HBMM master bitmap will not perform the merge as long
as the shadow set is mounted on a system with an HBMM master bitmap. See
Section 6.12.8 for information on how to recover from this situation.

6.3 HBMM in a Mixed-Version or Mixed-Architecture OpenVMS
Cluster System

HBMM is supported by OpenVMS Alpha Version 8.2 and OpenVMS I64
Version 8.2. HBMM is also supported by OpenVMS Alpha Version 7.3-2 with an
HBMM kit.

HBMM does not require that all cluster members have HBMM support, but does
require that all cluster members support write bitmaps.

6–2 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.3 HBMM in a Mixed-Version or Mixed-Architecture OpenVMS Cluster System

Earlier versions of OpenVMS that support write bitmaps are:

• OpenVMS Alpha Version 7.2-2 and higher

• OpenVMS VAX Version 7.3

If a system in the cluster does not support write bitmaps, neither HBMM nor
minicopy functionality can be used in that cluster. Furthermore, if a system that
does not support write bitmaps joins a cluster whose members do support them,
all existing HBMM and minicopy bitmaps are deleted.

Once an HBMM-capable system mounts a shadow set, and HBMM is enabled for
use, only the cluster members that are HBMM capable can mount that shadow
set.

Whereas minicopy requires that all cluster members have minicopy support,
HBMM requires only that all cluster members support write bitmaps but does
not require that they all support HBMM.

Enhanced Shadowing Features
To enforce this restriction (and to provide for future enhancements), shadow sets
using the HBMM feature are marked as having Enhanced Shadowing Features.
This designation is included in the SHOW SHADOW DSAn display, as are the
particular features that are in use, as shown in the following example:

$ SHOW SHADOW DSA0
_DSA0: Volume Label: TST0
Virtual Unit State: Steady State
Enhanced Shadowing Features in use:
Host-Based Minimerge (HBMM)

VU Timeout Value 3600 VU Site Value 0
Copy/Merge Priority 5000 Mini Merge Enabled
Served Path Delay 30

HBMM Policy
HBMM Reset Threshold: 50000
HBMM Master lists:
Any 1 of the nodes: RAIN,SNOW

HBMM bitmaps are active on RAIN
Modified blocks since bitmap creation: 254

Device 252DKA0
Read Cost 2 Site 0
Member Timeout 10

Device 252DKA100 Master Member
Read Cost 501 Site 0
Member Timeout 10

$

Once a shadow set is marked as using Enhanced Shadowing Features, it remains
so until it is dismounted on all systems in the cluster. When you remount the
shadow set, the features being requested will be reevaluated. If the shadow set is
no longer using any enhanced features, then it will be noted on the display and
this shadow set will be available for mounting even on nodes that do not support
the enhanced features.

Systems that are not HBMM capable will fail to mount HBMM shadow sets.
However, if HBMM is not used by the specified shadow set, the shadow set can be
mounted on prior versions of OpenVMS that are not HBMM capable.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–3

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.3 HBMM in a Mixed-Version or Mixed-Architecture OpenVMS Cluster System

Mount Utility Messages
If a MOUNT command for an HBMM shadow set is issued on a system that
supports bitmaps but is not HBMM capable, an error message is displayed.
(As noted in Section 6.2, systems running versions of Volume Shadowing for
OpenVMS that support bitmaps but are not HBMM capable can be members of
the cluster with systems that support HBMM, but they cannot mount HBMM
shadow sets.)

The message varies, depending on the number of members in the shadow set and
the manner in which the mount is attempted. The mount may appear to hang
(for 30 seconds or so) while the Mount utility attempts to retry the command, and
then fails.

The errors that can be generated by the Mount utility failing to mount an HBMM
shadow set include the following:

%MOUNT-F-DEVBUSY, mount or dismount in progress on device
%MOUNT-F-XSMBRS, maximum number of shadow members exceeded

A Mount utility remedial kit that eliminates the delay and displays a more useful
message may be available in the future for earlier versions of OpenVMS that
support bitmaps.

Once a shadow set is marked as an HBMM shadow set, it remains so marked
until it is dismounted from all systems in the cluster. When you remount a
shadow set, if it is no longer using HBMM, it can be mounted on prior versions of
OpenVMS that are not HBMM capable.

6.4 Overview of Full Merge and Minimerge Operations
The purpose of either a full merge or minimerge recovery operation is to compare
data on shadow set members to ensure that all of them contain identical data
on every logical block. Each block is identified by its logical block number
(LBN). During the recovery operation, application I/O continues but at a slower
rate. A full merge or minimerge operation is managed by one of the OpenVMS
systems that has the shadow set mounted. Throughout this manual, minimerge
operation and merge operation refer to a minimerge recovery operation and a
merge recovery operation, respectively.

A full merge or minimerge operation is initiated by any of the following events:

• A system failure results in the possibility of incomplete application writes.

• A shadow set enters mount verification and then times out or aborts mount
verification, under certain conditions (as described in Section 6.4.2).

• A system manager issues a SET SHADOW/DEMAND_MERGE command.

6.4.1 Merge Resulting from a System Failure
When a system with a mounted shadow set fails, if a write request is made to
a shadow set and the system fails before a completion status is returned to the
application, the data might be inconsistent on the shadow set members:

• All members might contain the new data.

• All members might contain the old data.

• Some members might contain new data and others might contain old data.

6–4 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.4 Overview of Full Merge and Minimerge Operations

The exact timing of the failure during the original write request determines the
outcome. Volume Shadowing for OpenVMS ensures that corresponding LBNs on
each shadow set member contain the same data (old or new), when the application
issues a read to the virtual unit.

Note

Volume Shadowing for OpenVMS guarantees that data is the same on all
members of the shadow set, but it cannot guarantee that a write request
that was in flight when a system failed is recorded on the shadow set.
The volume might contain the data from the last write request, depending
on when the failure occurred. In this regard, the shadow set does not
differ from a nonshadowed device. The application should be designed to
function properly in either case.

6.4.2 Merge Resulting from Mount Verification Timeout
A shadow set that enters mount verification and either times out or aborts mount
verification will enter a merge state if the following conditions are true:

• There are outstanding write I/O requests in the shadow driver’s internal
queues on the system or systems on which it has timed out.

• The shadow set is mounted on other systems in the cluster.

The system on which the mount verification timed out (or aborted mount
verification) notifies the other systems on which the shadow set is mounted
that a merge operation is needed, and then it will disable the shadow set. (It does
not dismount it.)

For example, if a shadow set is mounted on eight systems and mount verification
times out on two of them, those two systems check their internal queues for write
I/O. If any write I/O is found, the shadow set will need to be merged.

6.4.3 Merge Resulting from Use of SET SHADOW/DEMAND_MERGE
The SET SHADOW/DEMAND_MERGE command initiates a merge of a specified
shadow set or of all shadow sets. This qualifier is useful if the shadow set was
created with the INITIALIZE/SHADOW command without the use of the /ERASE
qualifier.

The SET SHADOW command was introduced in OpenVMS Alpha Version 7.3-2.
For more information about using SET SHADOW/DEMAND_MERGE, refer to
HP OpenVMS DCL Dictionary and to the HP Volume Shadowing for OpenVMS
manual.

6.4.4 Comparison of Merge and Minimerge Operations
In a full merge operation, the members of a shadow set are compared with each
other to ensure that they contain the same data. This is done by performing
a block-by-block comparison of the entire volume. This can be a very lengthy
procedure.

A minimerge operation can be significantly faster. By using information about
write operations that were logged in volatile controller storage or in a write
bitmap on an OpenVMS system, volume shadowing merges only those areas of
the shadow set where write activity occurred. This avoids the need for the entire
volume scan that is required by full merge operations, thus reducing consumption
of system I/O resources.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–5

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.4 Overview of Full Merge and Minimerge Operations

Prior to the introduction of HBMM, minimerge was controller-based and available
only on the HSJ, HSC, and HSD controllers.

6.5 Overview of HBMM
HBMM depends on bitmaps and policies to provide the information required for
minimerge operations. Depending on your computing environment, one HBMM
policy, a DEFAULT policy that you specify, might be sufficient.

Before you can use HBMM for recovery of a shadow set, the following conditions
must be true:

• An HBMM policy exists.

• An HBMM policy is associated with a shadow set.

• The shadow set is mounted on one or more systems that are specified in the
HBMM policy.

When a policy is associated with a shadow set and the shadow set is mounted on
several systems, bitmaps specific to that shadow set are created.

The systems selected from the master list, as specified in the HBMM policy
definition, can perform a minimerge operation because they possess the master
bitmaps. All other systems on which the shadow set is mounted possess a local
bitmap for each master bitmap.

6.5.1 Bitmaps: Master and Local
For a given bitmap, there is exactly one master version on some system in the
cluster and a local version on every other system that has the associated shadow
set mounted. A minimerge operation can occur only on a system with a master
bitmap. A shadow set can have up to six HBMM master bitmaps. Multiple
master bitmaps for the same shadow set are equivalent but they do have different
bitmap IDs.

The following example shows two master bitmaps for DSA12, one on RAIN and
one on SNOW, each with a unique bitmap ID:

$ SHOW DEVICE/BITMAP DSA12

Device BitMap Size Percent Type of Master Active
Name ID (Bytes) Populated Bitmap Node
DSA12: 00020007 8364 0% Minimerge RAIN Yes

00010008 8364 0% Minimerge SNOW Yes

If only one master bitmap exists for the shadow set, and the system with the
master bitmap fails or is shut down, the bitmap is gone; that is, the remaining
local versions are automatically deleted. Local bitmaps cannot be used for
recovery.

If multiple master bitmaps were created for the shadow set and at least one
remains, that master bitmap can be used for recovery. HP recommends the use
of multiple master bitmaps, especially for multiple-site cluster systems. Multiple
master bitmaps increase the likelihood of an HBMM operation rather than a full
merge in the event of a system failure.

Bitmaps require additional memory. The calculation is based on the shadow set
volume size. For every gigabyte of storage of a shadow set mounted on a system,
2 KB of bitmap memory is required on that system for each bitmap. For example,
a shadow set with a volume size of 200 GB of storage and 2 bitmaps uses 800 KB
of memory on every system on which it is mounted.

6–6 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.5 Overview of HBMM

6.5.2 HBMM Policies
A policy specifies the following attributes for one or more shadow sets:

• Names of systems that are eligible to host a master bitmap.

• Number of systems that will host a master bitmap (not to exceed six). If this
number is omitted, the first available six systems of the systems you specified
are selected.

• Threshold (in 512-byte blocks) at which the bitmaps are reset. If omitted, the
threshold defaults to 50,000 blocks.

You can assign almost any name to a policy. However, the reserved names
DEFAULT and NODEFAULT have specific properties that are described in
Section 6.7. You can also create a policy without a name and assign it to a
specific shadow set. An advantage of a named policy is that it can be reused by
specifying only its name.

Multiple policies can be created to customize the minimerge operations in a
cluster.

You use the SET SHADOW/POLICY command with HBMM specific qualifiers to
define, assign, deassign, and delete policies and to enable and disable HBMM on
a shadow set. SET SHADOW/POLICY is the only user interface for specifying
HBMM policies. You cannot use the MOUNT command to define a policy. You
can define a policy before the shadow set is mounted. (Policies can be associated
with shadow sets in other ways as well, as described in Section 6.7.)

6.6 HBMM Policy Specification Syntax
An HBMM policy specification consists of a list of HBMM policy keywords
enclosed with parentheses. The HBMM policy keywords are MASTER_LIST,
COUNT, and RESET_THRESHOLD. Of the three keywords, only MASTER_LIST
must be specified. If COUNT and RESET_THRESHOLD are omitted, default
values are supplied. (For examples of policy specifications, see Section 6.9.1 and
HP OpenVMS DCL Dictionary.)

The use of these keywords and the rules for specifying them are described in this
section.

MASTER_LIST=system-list
The MASTER_LIST keyword is used to identify a set of systems as candidates
for a master bitmap. The system-list value can be a single system name; a
parenthesized, comma-separated list of system names; or the asterisk (*) wildcard
character. For example:

MASTER_LIST=node1
MASTER_LIST=(node1,node2,node3)
MASTER_LIST=*

When the system list consists of a single system name or the wildcard character,
parentheses are optional.

An HBMM policy must include at least one MASTER_LIST. Multiple master
lists are optional. If a policy has multiple master lists, the entire policy must be
enclosed with parentheses, and each constituent master list must be separated by
a comma as shown in the following example:

(MASTER_LIST=(node1,node2), MASTER_LIST=(node3,node4))

There is no significance to the position of a system name in a master list.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–7

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.6 HBMM Policy Specification Syntax

COUNT=n
The COUNT keyword specifies the number of the systems, which are named in
the master list, that can have a master bitmap. Therefore, the COUNT keyword
must be associated with a specific master list by enclosing both with parentheses.

A COUNT value of n means that you want master bitmaps on any n systems in
the associated master list. It does not necessarily mean that the first n systems
in the list are chosen.

The COUNT keyword is optional. When omitted, the default value is the the
number of systems in the master list or the value of 6, whichever is less. You
cannot specify more than one COUNT keyword for any one master list.

The following two examples are valid policies:

(MASTER_LIST=(node1,node2,node3), COUNT=2)

(MASTER_LIST=(node1,node2,node3),COUNT=2),(COUNT=2, MASTER_LIST=(system4,system5,system6)

In contrast, the following example is not valid because the COUNT keyword is
not grouped with a specific master list:

(MASTER_LIST=(node1,node2), MASTER_LIST=(node4,node5), COUNT=1)

RESET_THRESHOLD=n
The RESET_THRESHOLD keyword specifies the number of blocks that can be
set before the bitmap is eligible to be cleared. Each bit that is set in a master
bitmap corresponds to a set of blocks that needs to be merged. Therefore, the
merge time can be influenced by this value.

Bitmaps are eligible to be cleared when the RESET_THRESHOLD is exceeded.
However, the reset is not guaranteed to occur immediately when the threshold is
crossed. For additional information about choosing a value for this attribute, see
Section 6.8.2 and Section 6.10.2.

A single reset threshold value is associated with any given HBMM policy.
Therefore, the RESET_THRESHOLD keyword cannot be specified more than
once in a given policy specification. Because its scope is the entire policy, the
RESET_THRESHOLD keyword cannot be specified inside a constituent master
list when the policy uses multiple master lists.

When the RESET_THRESHOLD keyword is omitted, the value of 50000 is used
by default.

The following policy example includes an explicit reset threshold value:

(MASTER_LIST=*, COUNT=4, RESET_THRESHOLD=100000)

6.7 Rules Governing HBMM Policies
The following rules govern the creation and management of HBMM policies. The
rules are based on the assumption that a shadow set is mounted on a system that
supports HBMM.

Policies and Their Attributes

• A policy can be assigned to a shadow set by specifying only its attributes.
The number of policies that you can assign in this way is limited only by the
number of shadow sets that are supported on a system.

• A shadow set can have only one HBMM policy associated with it at a time.

• Policies are in effect clusterwide.

6–8 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.7 Rules Governing HBMM Policies

• Policy names must conform to the following rules:

A policy name can be from 1 to 64 characters in length and is case
insensitive.

Only letters, numbers, the dollar sign ($), and the underscore (_) are
allowed.

• A policy name must be specified in full; abbreviations are not allowed.

• A named policy can be assigned to a shadow set only by the SET
SHADOW/POLICY=HBMM=policy-name command.

• The limit on user-defined, named policies is 128.

DEFAULT and NODEFAULT Policies
The named policies DEFAULT and NODEFAULT have special properties, as
summarized in the following sections:

• DEFAULT

A DEFAULT policy is useful if the majority of the shadow sets in a cluster
are expected to use an identical policy.

You can create a DEFAULT policy by defining a named policy with the
reserved name DEFAULT. No predetermined DEFAULT policy is provided
by HP.

When a policy with the reserved name of DEFAULT is defined, this policy
is associated with a shadow set by any of the following operations:

+ Mount of a shadow set without an associated policy

The DEFAULT policy, if defined, is applied to a shadow set in the
absence of an assigned policy (including the NODEFAULT policy). For
example, when shadow set DSA1 is mounted on an HBMM-capable
system, an attempt is made to apply an HBMM policy, if one exists,
that is specific to DSA1. (To verify whether a device-specific policy
exists and to display specific policies, see Section 6.9.9.)

If a policy has not been defined specifically for DSA1, an attempt is
made to apply the DEFAULT policy. If the DEFAULT policy exists,
the attributes of that policy are applied to DSA1.

+ End of merge of a shadow set without an associated policy

+ Use of SET SHADOW/ENABLE=HBMM command

If a shadow set has a policy association and that policy association is
deleted, it is then eligible for the DEFAULT policy, if one was established
for your cluster.

• NODEFAULT Policy

The NODEFAULT policy specifies that the shadow set to which it is
applied will not use HBMM; no HBMM bitmaps are created anywhere in
the cluster for this shadow set.

In a cluster where a DEFAULT policy has been defined, the NODEFAULT
policy can be used to prevent specific shadow sets from receiving the
default policy.

The NODEFAULT policy cannot be deleted or redefined.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–9

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.7 Rules Governing HBMM Policies

Assignment and Activation of a Policy

• A policy can be assigned to a shadow set before the shadow set is mounted on
any system in the cluster.

• If a policy has been assigned, it is activated by the first mount of a shadow
set on a system capable of having a master bitmap.

• Assigning a policy implicitly enables HBMM on a mounted shadow set if it is
mounted on a system that can create a master bitmap. Consider DSA1 that
is mounted on system MAPLE. When DSA1 was mounted, no HBMM policy
was set for DSA1, nor was there a DEFAULT policy that would be applied.
Later, the following command is used:

$ SET SHADOW DSA1:/POLICY=HBMM=(MASTER=(MAPLE), COUNT=1)

Because DSA1 is already mounted on system MAPLE, HBMM becomes
enabled as a result of the policy assignment (see Section 6.9.2).

• Any attempt to enable HBMM by means of the SET SHADOW DSAn
/ENABLE=HBMM returns a failure if a shadow set is not mounted on a
system that has a master bitmap, or if the policy has not been defined.

• As new systems join the cluster, they inherit the policies in existence in that
cluster.

Changes to Policies

• Named policies can be created, changed, and deleted at will. Changes made
to a named policy are not inherited by any mounted shadow set that was
assigned the previous version of that named policy.

• The association of a policy with a mounted shadow set cannot be changed if
HBMM is enabled for that shadow set. HBMM must first be disabled on that
shadow set, and then a different policy can be assigned to it.

• Any policy change is clusterwide.

Life of a Policy

• All policies remain in effect in a cluster as long as at least one system remains
active. However, if all systems are shut down, all policy definitions and
associations are deleted. The policies must be defined and assigned again
when the systems form the cluster. Therefore, HP recommends that you
define your desired HBMM policies in your system startup procedures before
you mount your shadow sets.

• Policy assignments persist across the disabling of HBMM or the dismounting
of the shadow set as long as at least one system in the cluster remains active.

6.8 Guidelines for Establishing HBMM Policies
Establishing HBMM policies is likely to be an ongoing process as configurations
change and as you learn more about how HBMM works and how it affects various
operations on your systems. This section describes a number of considerations to
help you determine what policies are appropriate for your configuration.

The settings depend on your hardware and software configuration, the computing
load, and your operational requirements. These guidelines should assist you with
choosing the initial settings for your configuration. As you observe the results
in your configuration, you can make further adjustments to suit your computing
environment.

6–10 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.8 Guidelines for Establishing HBMM Policies

6.8.1 Selecting the Systems to Host Master Bitmaps
There are several factors to consider when choosing the number of master
bitmaps to specify in a policy and the systems that will host the master bitmaps.
The first issue is how many master bitmaps should be used in the configuration.
Six is the maximum per shadow set. The use of each additional master bitmap
has a slight impact on write performance and also consumes memory on each
system (as described in Section 6.5.1).

Using only one master bitmap creates a single point of failure; if the system
hosting the master bitmap fails, then this shadow sets undergoes a full merge.
Therefore, the memory consumption must be weighed against the adverse effects
of a full merge. Using six master bitmaps provides the greatest defense against
performing full merges.

Another issue when selecting a system to host the master bitmap is the I/O
bandwidth of the various systems. Keep in mind that minimerges are always
performed on a system that has a master bitmap. Therefore, low-bandwidth
systems, such as satellite cluster members, are not good candidates.

The disaster tolerance of the configuration is also important in the decision
process. Specifying systems to host master bitmaps at multiple sites helps ensure
that a minimerge is performed if connectivity to an entire site is lost. A two-site
configuration should ensure that half the master bitmaps are at each site, and a
three-site configuration should ensure that one third of the master bitmaps are at
each of the three sites.

6.8.2 Setting the Bitmap RESET_THRESHOLD Value
HBMM bitmaps keep track of writes to a shadow set. The more bits that
are set in the bitmap, the greater the amount of merging that is required in
the event of a minimerge. HBMM clears the bitmap (after ensuring that all
outstanding writes have completed so that the members are consistent) when
certain conditions are met (see Section 6.10.2). A freshly cleared bitmap, with few
bits set, performs a minimerge much more quickly.

The bitmap reset, however, can be costly to I/O performance. Before a bitmap
reset can occur, all write I/O to the shadow set must be paused and any write I/O
that is in flight must be completed. Then the bitmap is cleared. This is done on
all systems on a per shadow set basis. Therefore, avoid a reset threshold setting
that causes frequent resets.

You can view the number of resets performed by using the SHOW SHADOW
command, as shown in the following example:

$ SHOW SHADOW DSA1031
_DSA1031: Volume Label: HBMM1031
Virtual Unit State: Steady State
Enhanced Shadowing Features in use:

Host-Based Minimerge (HBMM)

VU Timeout Value 3600 VU Site Value 0
Copy/Merge Priority 5000 Mini Merge Enabled
Served Path Delay 30

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–11

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.8 Guidelines for Establishing HBMM Policies

HBMM Policy
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the systems: LEMON, ORANGE
Any 1 of the systems: MELON, PEACH

HBMM bitmaps are active on LEMON, MELON, ORANGE
HBMM Reset Count 76 Last Reset 29-JAN-2004 10:13:53.90
Modified blocks since last bitmap reset: 40132

.

.

.
$

Writes that need to set bits in the bitmap are slightly slower than writes to areas
that are already marked as having been written. Therefore, if many of the writes
to a particular shadow set are concentrated in certain ‘‘hot’’ files, then the reset
threshold should be made large enough so that the same bits are not constantly
set and then cleared.

On the other hand, if the reset threshold is too large, then the advantages of
HBMM are reduced. For example, if 50% of the bitmap is populated (that is,
50% of the shadow set has been written to since the last reset), then the HBMM
merge will take approximately 50% of the time of a full merge.

When selecting a threshold reset value, you need to balance the effects of bitmap
resets on I/O performance with the time it takes to perform HBMM minimerges.
The goal is to set the reset value as low as possible (thus decreasing merge times)
while not affecting application I/O performance. Too low a value will degrade I/O
performance. Too high a value causes HBMM merges to take extra time.

Note

You can change the reset threshold while a policy is in effect.

6.8.3 Using Multiple Policies
HBMM policies are defined to implement the decisions regarding master bitmaps.
Some sites might find that a single policy can effectively implement the decisions.
Other sites might need greater granularity and therefore implement multiple
policies.

The most likely need for multiple policies is when the cluster includes enough
high-bandwidth systems that you want to ensure that the merge load is spread
out. Remember, minimerges occur only on systems that host a master bitmap.
So, if 12 systems with high bandwidth are set up to perform minimerge or merge
operations (the system parameter SHADOW_MAX_COPY is greater than zero
on all systems), then you should ensure that the master bitmaps are spread out
among these high-bandwidth systems.

Multiple HBMM policies are also useful when shadow sets need different bitmap
reset thresholds. The master list can be the same for each policy, but the
threshold can differ.

6–12 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.9 Configuring and Managing HBMM

6.9 Configuring and Managing HBMM
This section describes the major tasks for configuring and managing HBMM.

6.9.1 How to Define an HBMM Policy
The SET SHADOW/POLICY=HBMM command is used to define HBMM policies.
You can define multiple policies for your environment. The following examples
show how to define two policies, a DEFAULT policy and POLICY_1, a named
policy.

To define the policy named DEFAULT:

$ SET SHADOW/POLICY=HBMM=(MASTER_LIST=*)/NAME=DEFAULT

In this example, a DEFAULT policy is created for the cluster. The use of the
asterisk wildcard (*) means that any system can host a master bitmap. The
omission of the keyword COUNT=n means that up to six systems (the default
and the current maximum supported) can host a master bitmap. The DEFAULT
policy is inherited at mount time by shadow sets that have not been assigned a
named policy.

The following example defines a named policy (POLICY_1), specifies the systems
that are eligible to host a master bitmap, limits to two the number of systems
that can host a master bitmap, and specifies a higher threshold (default is 50,000
blocks) to be reached before clearing the bitmap.

$ SET SHADOW /POLICY=HBMM=(-
_$ (MASTER_LIST=(NODE1,NODE2,NODE3), COUNT=2), -
_$ RESET_THRESHOLD=100000) -
_$ /NAME=POLICY_1

For the full DCL syntax for the SET SHADOW/POLICY=HBMM command, see
HP OpenVMS DCL Dictionary.

6.9.2 How to Assign an HBMM Policy to a Shadow Set
You can assign a policy, named or unnamed, to a shadow set. To assign an
existing named policy, use the following command:

$ SET SHADOW DSAn:/POLICY=HBMM=policy-name

To assign an unnamed policy to a shadow set, use the same command, but in
place of the policy name, specify the attributes of the policy you want to use. For
example:

$ SET SHADOW DSA1:/POLICY=HBMM=(MASTER_LIST=(NODE1, NODE2, NODE3), COUNT=2)

In this example, the default bitmap reset value of 50,000 blocks takes effect
because the RESET_THRESHOLD keyword was omitted.

6.9.3 How to Activate HBMM on a Shadow Set
HBMM is automatically activated on a shadow set under the following conditions:

• An HBMM policy exists for a given shadow set and that shadow set is then
mounted on one or more systems defined in the master list.

• An HBMM policy is created for a mounted shadow set and at least one system
that has it mounted is defined in the master list.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–13

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.9 Configuring and Managing HBMM

You can also activate HBMM with the SET SHADOW/ENABLE=HBMM
command, provided a policy exists and the shadow set is mounted on a system
defined in the master list of the shadow set policy, and the count has not been
exceeded.

6.9.4 How to Disable HBMM on a Shadow Set
To disable HBMM on a shadow set, use the following command:

$ SET SHADOW DSAn:/DISABLE=HBMM

Reasons for disabling HBMM on a shadow set include:

• To change the policy associated with it.

• To delete the policy associated with it.

• To mount the shadow set on a system that does not support HBMM. You
must disable HBMM first and then dismount it from all the HBMM capable
systems on which it is mounted before you can mount it on a system that does
not support HBMM.

HBMM remains disabled until you either re-enable it or define a new policy for
the shadow set.

6.9.5 How to Remove a Policy Association from a Shadow Set
Before removing a policy association from a shadow set, HBMM must be disabled,
if active. Then you can remove a policy association from a shadow set by entering
the following command:

$ SET SHADOW DSAn:/POLICY=HBMM/DELETE

This command removes any policy that had been set for this shadow set,
making the shadow set eligible for the DEFAULT policy. If a DEFAULT
policy exists, it will be assigned the next time the shadow set becomes eligible
for a policy, for example, at the end of a merge or when you issue the SET
SHADOW/ENABLE=HBMM command.

6.9.6 How to Change a Policy Assignment of a Shadow Set
To change a policy assigned to a shadow set, you must first disable HBMM, as
described in Section 6.9.4, and then assign another policy to the shadow set. To
apply a different policy, specify one by name or specify policy attributes (thereby
creating an ‘‘unnamed’’ policy), as described in Section 6.9.2. Specifying a new
policy (or policy attributes) for a shadow set replaces the prior policy. The use of
the command shown in Section 6.9.5 is not required when you are changing the
policy assignment.

6.9.7 How to Delete a Named Policy from the Cluster
You can delete a named policy with the /DELETE qualifier, as shown in the
following example:

$ SET SHADOW /POLICY=HBMM/NAME=policy-name/DELETE

This command deletes the policy whose name you specified and takes effect
across the cluster. It does not delete the policy from any shadow set to which it
was already assigned.

6–14 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.9 Configuring and Managing HBMM

Note

You cannot delete the NODEFAULT policy.

6.9.8 How to Apply a Changed DEFAULT Policy
The DEFAULT policy can be changed at any time. However, if a previous
definition of the DEFAULT was associated with a shadow set, a subsequent
change to the definition of the DEFAULT policy is not retroactively applied to
that shadow set. In this regard, the DEFAULT policy behaves just like any other
named policy.

This section shows how to apply a changed DEFAULT policy.

Initially, the following DEFAULT policy was associated with DSA20 when it was
mounted:

$ SET SHADOW/POLICY=HBMM=(MASTER=(NODE1,NODE2,NODE3),COUNT=2)/NAME=DEFAULT
$ MOUNT/SYSTEM DSA20:/SHADOW=(1DGA20,1DGA21) VOL_20

Subsequently, the DEFAULT policy is redefined by the following command. This
redefined policy allows any node in the cluster to be eligible for an HBMM master
bitmap:

$ SET SHADOW/POLICY=HBMM=(MASTER=*,COUNT=2)/NAME=DEFAULT

You can apply the redefined DEFAULT policy to DSA20 by using the following
commands:

$ SET SHADOW DSA20:/DISABLE=HBMM
$ SET SHADOW DSA20:/POLICY=HBMM/DELETE
$ SET SHADOW DSA20:/ENABLE=HBMM

Note that you must explicitly delete the HBMM policy associated with DSA20
in order for DSA20 to become eligible for the current DEFAULT policy. This
step is required because, when HBMM is disabled on DSA20, the policy
(MASTER=(NODE1,NODE2,NODE3),COUNT=2) remains associated with
DSA20.

An alternative way to apply the updated DEFAULT policy to DSA20 is to take
advantage of the fact that the DEFAULT policy is a named policy. This method
requires only two commands, as shown next:

$ SET SHADOW DSA20:/DISABLE=HBMM
$ SET SHADOW DSA20:/POLICY=HBMM=DEFAULT

6.9.9 How to Display Policies
You can display policies with the SHOW SHADOW command. You can display:

• The policy associated with a specified shadow set

• The definition of a named policy

• All shadow sets in a cluster with policy assignments, together with the
definition of each policy

• All named policies and their definitions that exist on a cluster

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–15

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.9 Configuring and Managing HBMM

Displaying the Policy of a Specific Shadow Set
To display the policy associated with a specific shadow set, issue the following
command:

$ SHOW SHADOW DSAn:/POLICY=HBMM

An example of the resulting output follows:

$ SHOW SHADOW DSA999:/POLICY=HBMM
HBMM Policy for device _DSA999:
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2,NODE3
Any 1 of the nodes: NODE4,NODE5
Up to any 2 of the nodes: NODE6,NODE7,NODE8

Displaying the Definition of a Named Policy
To display the definition of a named policy, issue the following command:

$ SHOW SHADOW/POLICY=HBMM/NAME=policy-name

The following display shows the definition of the PEAKS_ISLAND policy:

$ SHOW SHADOW/POLICY=HBMM/NAME=PEAKS_ISLAND
HBMM Policy PEAKS_ISLAND
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2,NODE3
Any 1 of the nodes: NODE4,NODE5
Up to any 2 of the nodes: NODE6,NODE7,NODE8

Displaying All Shadow Sets with Policy Assignments
To display all shadow sets in a cluster with policy assignments, along with the
definition of each policy, use the following command:

$ SHOW SHADOW/POLICY=HBMM

The following display results from this command:

$ SHOW SHADOW/POLICY=HBMM
HBMM Policy for device _DSA12:
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2
HBMM bitmaps are active on NODE1,NODE2
Modified blocks since bitmap creation: 254

HBMM Policy for device _DSA30:
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: FLURRY,FREEZE,HOTTUB

HBMM Policy for device _DSA99:
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2,NODE3
Any 1 of the nodes: NODE4,NODE5
Up to any 2 of the nodes: NODE6,NODE7,NODE8

HBMM Policy for device _DSA999:
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2,NODE3
Any 1 of the nodes: NODE4,NODE5
Up to any 2 of the nodes: NODE6,NODE7,NODE8

6–16 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.9 Configuring and Managing HBMM

Displaying All Named Policies on a Cluster
To display the named policies that exist on a cluster, along with their definitions,
issue the following command:

$ SHOW SHADOW/POLICY=HBMM/NAME

The named policies are displayed in the order in which they were created. The
following display results from this command:

$ SHOW SHADOW/POLICY=HBMM/NAME
HBMM Policy DEFAULT

HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 6 nodes in the cluster

HBMM Policy PEAKS_ISLAND
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2,NODE3
Any 1 of the nodes: NODE4,NODE5
Up to any 2 of the nodes: NODE6,NODE7,NODE8

HBMM Policy POLICY_1
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: NODE1,NODE2,NODE3
Any 1 of the nodes: NODE4,NODE5

HBMM Policy ICE_HOTELS
HBMM Reset Threshold: 50000
HBMM Master lists:
Up to any 2 of the nodes: QUEBEC,ICELND,SWEDEN
Any 1 of the nodes: ALASKA,GRNLND

6.9.10 How to Display the Merge Status of Shadow Sets
You can check the merge status of each shadow set member by issuing the SHOW
SHADOW/MERGE DSAn command. The /MERGE qualifier returns one of the
following messages:

• Merge is not required.

• Merge is pending.

• Merge is in progress on node node-name.

An example of the display produced by the SHOW SHADOW/MERGE DSAn
command follows:

$ SHOW SHADOW/MERGE
Device Volume Name Status
_DSA1010 FOOBAR Merging (10%)

If a copy operation (instead of the merge operation) is currently active, the display
shows the percentage of the merge that has completed and the percentage of the
copy that has completed with the designation ‘‘Copy Active,’’ as follows:

$ SHOW SHADOW/MERGE
Device Volume Name Status
_DSA1010 FOOBAR Merging (23%), Copy Active (77%) on CSGF1

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–17

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.9 Configuring and Managing HBMM

6.9.11 How to Prevent Merge Operations on a System
You can prevent merge operations on a system in two ways:

• Set SHADOW_MAX_COPY to 0

• Set the priority for merge and copy operations to zero for every shadow set
mounted on the system using the SET SHADOW/PRIORITY=0 DSAn for each
shadow set.

6.9.12 Considerations for Multiple-Site OpenVMS Cluster Systems
Only the systems that have an HBMM master bitmap for a particular shadow set
are able to perform HBMM recovery on that shadow set. If a merge recovery is
required on a shadow set and no systems in the cluster have an HBMM master
bitmap for that shadow set, a full merge will be performed.

Therefore, to minimize the need to perform a full merge, you should use policies
that attempt to maintain at least one HBMM master bitmap at each site in a
multiple-site OpenVMS Cluster system. The ability to specify multiple master
lists in an HBMM policy is expressly designed for this purpose. You should
specify a separate MASTER_LIST for each site.

For example, consider a 3-site OpenVMS Cluster system with 12 cluster members:

Site 1: Member systems NYN1, NYN2, NYN3, and NYN4
Site 2: Member systems CTN1, CTN2, CTN3, and CTN4
Site 3: Member systems NJN1, NJN2, NJN3, and NJN4

The following definition of a DEFAULT policy would provide for up to two HBMM
master bitmaps at each site:

$ SET SHADOW/NAME=DEFAULT/POLICY=HBMM=(-
_$ (MASTER_LIST=(NYN1,NYN2,NYN3,NYN4), COUNT=2), -
_$ (MASTER_LIST=(CTN1,CTN2,CTN3,CTN4), COUNT=2), -
_$ (MASTER_LIST=(NJN1,NJN2,NJN3,NJN4), COUNT=2))

Specifically, this policy requests master bitmaps at any two of the systems in the
first master list, any two of the systems in the second master list, and any two of
the systems in the third master list.

Note that you cannot accomplish this type of distribution by listing the systems
in a particular order within a single MASTER_LIST. This is because the order in
which the systems are specified in a master list does not affect the order in which
the systems are considered when HBMM master bitmaps are created. When an
event occurs that warrants the creation of an HBMM master bitmap, the creation
of these bitmaps is done in random order by the systems that have the shadow
set mounted. In the following example, the likelihood of system NYN1 getting a
master bitmap is the same for either POLICY_A or POLICY_B:

$ SET SHADOW/NAME=POLICY_A/POLICY=HBMM=(-
_$ (MASTER_LIST=(NYN1,CTN1,NJN1,NYN2,CTN2,NJN2),COUNT=3))

$ SET SHADOW/NAME=POLICY_B/POLICY=HBMM=(-
_$ (MASTER_LIST=(NJN2,CTN2,NYN2,NJN1,CTN1,NYN1),COUNT=3))

6.10 New System Parameters That Affect HBMM
Two new system parameters are introduced in this version: SHADOW_REC_DLY
and SHADOW_HBMM_RTC.

6–18 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.10 New System Parameters That Affect HBMM

6.10.1 SHADOW_REC_DLY Parameter
SHADOW_REC_DLY governs system behavior after a system failure or after a
shadow set is aborted. The value of the SHADOW_REC_DLY parameter is added
to the value of the RECNXINTERVAL parameter to determine how long a system
waits before it attempts to manage a merge or copy operation on any shadow sets
that it has mounted.

SHADOW_REC_DLY can be used to better predict which systems in an OpenVMS
Cluster will perform recovery operations. This is done by setting lower values of
SHADOW_REC_DLY on systems that are preferred to handle recovery operations
and higher values of SHADOW_REC_DLY on the remaining systems.

SHADOW_REC_DLY is a dynamic parameter; its range is 0 to 65535 seconds.
The default value is 20 seconds.

For more information about controlling which systems perform the merge or copy
operations, see Section 6.12.5.

6.10.2 SHADOW_HBMM_RTC Parameter
SHADOW_HBMM_RTC is used to specify, in seconds, how frequently the modified
block count of the HBMM bitmap is compared with the reset threshold. If the
modified block count exceeds the reset threshold, the bitmap is zeroed.

The reset threshold is specified by the RESET_THRESHOLD keyword in the
/POLICY qualifier of the SET SHADOW command. This comparison is performed
for all shadow sets mounted on the system that have HBMM bitmaps.

When the comparison is made, the modified block count might exceed the reset
threshold by a small increment or by a much larger amount. The difference
depends on the write activity to the volume and the setting of SHADOW_HBMM_
RTC.

SHADOW_HBMM_RTC is a dynamic parameter; its range is 60 to 65535 seconds.
The default value is 150 seconds.

You can view the reset threshold setting and the modified block count, since
the last reset, in the SHOW SHADOW display. For guidelines for setting reset
threshold values and a sample SHOW SHADOW display, see Section 6.8.2. For a
SHOW SHADOW display that includes a modified block count greater than the
reset threshold value, see Example 9 for SHOW SHADOW in HP OpenVMS DCL
Dictionary.

6.11 Use of /DEMAND_MERGE When HBMM Is Enabled
If a shadow set is HBMM enabled and is actively using HBMM, then the SET
SHADOW/DEMAND_MERGE DSAn: command causes a minimerge operation to
occur. To force a full merge instead of a minimerge operation, you must disable
HBMM on the shadow set before issuing the SET SHADOW/DEMAND_MERGE
DSAn: command. For information about disabling HBMM, see Section 6.9.4.

The /DEMAND_MERGE qualifier of the SET SHADOW command is used
primarily to force a merge operation on shadow sets that were created with the
INITIALIZE/SHADOW command without specifying the /ERASE qualifier. The
/DEMAND_MERGE qualifier ensures that all blocks on the shadow set are the
same, including those blocks that are not currently allocated to files. System
managers can use this command at their convenience during off-peak demands
on their computing environment.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–19

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.11 Use of /DEMAND_MERGE When HBMM Is Enabled

If the /ERASE qualifier was not used when the shadow set was created with the
INITIALIZE/SHADOW command, and the SET SHADOW/DEMAND_MERGE
DSAn: command has not been executed, then the overhead of a full merge
operation on this shadow set is even higher than is normally encountered after a
system failure.

System managers can also use the SET SHADOW/DEMAND_MERGE DSAn:
command for the following reasons:

• If the ANALYZE/DISK/SHADOW command found differences between
the members of the shadow set. For more information, refer to the
ANALYZE/DISK/SHADOW command description in the HP Volume
Shadowing for OpenVMS manual.

• If they want to measure the impact that a minimerge or a full merge has on
their I/O throughput.

6.12 Prioritizing Merge and Copy Operations
Starting with this version of Volume Shadowing, greater control is available
to system managers for managing merge and copy operations. This greater
control is made possible by two new qualifiers to the SET SHADOW command,
/PRIORITY=n and /EVALUATE=RESOURCES, and a new system parameter,
SHADOW_REC_DLY. With these parameters, system managers can:

• Prioritize shadow sets for merge and copy operations on a per-system basis.

• Control which system performs a merge or copy operation of a particular
shadow set.

• Make changes to the SHADOW_MAX_COPY system parameter, which take
effect immediately.

6.12.1 Default Management of Merge and Copy Operations
If a system fails or if it aborts a shadow set, most commonly through mount
verification, such an action is termed a significant event. When one of these
significant events occurs, all systems in the cluster are notified automatically.
This notification causes all shadow server processes to stop any full merge or full
copy operations and release all the resources performing these operations. Then
every system can reallocate its resources to newer, higher-priority work.

After a predetermined delay, each system with a nonzero SHADOW_MAX_COPY
setting begins to process the shadow sets that are in a transient state, according
to their priority. The predetermined delay is governed by the new system
parameter SHADOW_REC_DLY. (For more information about SHADOW_REC_
DLY, see Section 6.12.5.) Every system allocates available SHADOW_MAX_COPY
resources based on a shadow set’s priority.

A shadow set is said to be in a steady state when none of the following
operations is pending or active:

• Minimerge

• Minicopy

• Full copy

• Full merge

6–20 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.12 Prioritizing Merge and Copy Operations

If a shadow set has one or more of these operations pending, or one operation
active, it is said to be in a transient state. While a combination of these
transient states is valid, only one operation at a time can be performed.

For example, suppose HBMM is not enabled. After a device is added to a shadow
set, it is marked as being in a full copy transient state. If the system on which
this shadow set is mounted fails, the shadow set is further marked as being in a
full merge state. In this example, the full copy operation is performed before the
full merge is started.

Note

The priority assigned to a shadow set does not affect the hierarchy of
transient state operations.

6.12.2 Hierarchy of Transient State Operations
Shadow set operations for a specific shadow set are performed in the following
order:

1. Minimerge

2. Copy (either minicopy or full copy)

3. Full merge

6.12.3 Assigning Priorities
When first mounted on a system, every shadow set is assigned a default priority
of 5000. You can assign a unique priority to every mounted shadow set on
a per-system basis using the SET SHADOW/PRIORITY=n DSAn command.
Every shadow set can have a unique priority per system, or shadow sets can be
assigned the same priority. Shadow sets with the same priority are managed
in a consistent way for each release. However, the order in which shadow sets
with the same priority are managed may change from release to release because
of changes to the algorithm. Therefore, if the order is important, assign them
different priorities.

The valid range for priority values is 0 through 10,000. The higher the assigned
value, the higher the priority. To ensure that high-priority volumes are merged
(or copied) before less important volumes, use this command to override the
default priority assignment on a system.

A priority level of 0 has a unique meaning. It means the shadow set is not
considered for merge or copy operations on this system.

Note

After the notification of a significant event and the allocation of a system’s
resources, it is not possible to directly affect any of the current merge or
copy operations on the system by assigning a different priority level to
one or more shadow sets. If you need to reprioritize one or more shadow
sets, you must use another technique, as described in Section 6.12.8.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–21

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.12 Prioritizing Merge and Copy Operations

6.12.4 Displaying Priority Values
You can display the priority of a shadow set on a specific system by issuing the
following command:

$ SHOW SHADOW/BY_PRIORITY DSAn:

This command displays the current priority and status of the specified shadow
set. If any copy or merge operations are in progress, the node on which the
operation is progressing is displayed, along with its progress. For example:

$ SHOW SHADOW DSA1104/BY_PRIORITY
Device Mbr Active
Name Cnt Priority Virtual Unit State on Node
_DSA1104: 2 5000 Merge Active (29%) MAX

You can use the following command to display the priority level and the status
for all of the shadow sets that exist on the system. The status indicates whether
the shadow set is currently undergoing a copy or merge operation or whether one
is required. If either or both operations are underway, the systems on which they
are occurring are identified in the display, as shown in the following example:

$ SHOW SHADOW/BY_PRIORITY
Device Mbr Active
Name Cnt Priority Virtual Unit State on Node
_DSA106: 2 10000 Steady State
_DSA108: 3 8000 Steady State
_DSA110: 3 8000 Steady State
_DSA112: 3 8000 Steady State
_DSA114: 1 7000 Steady State
_DSA116: 1 7000 Steady State
_DSA150: 2 7000 Steady State
_DSA152: 7000 Not Mounted on this node
_DSA154: 3 6000 Steady State
_DSA156: 1 6000 Steady State
_DSA159: 2 5000 Steady State
_DSA74: 3 5000 Merge Active (47%) CASSID
_DSA304: 2+1 5000 Merge Active (30%), Copy Active (3%) MAX
_DSA1104: 2 5000 Merge Active (29%) MAX
_DSA300: 2+1 5000 Merge Active (59%), Copy Active (0%) MAX
_DSA0: 1+2 5000 Copy Active (83%) CASSID
_DSA3: 2 3000 Steady State
_DSA100: 2 3000 Steady State
_DSA102: 1 3000 Steady State
_DSA104: 3 3000 Steady State
Total of 19 Operational shadow sets; 0 in Mount Verification; 1 not mounted
$

In this example, the 20 shadow sets on this system are displayed in their priority
order. In the event of a failure of another system in the cluster that has these
shadow sets mounted, the shadow sets are merged in this order on the system.

The Mbr Cnt field shows how many source members are in each shadow set. If
members are being added via a copy operation, this is indicated by +1 or +2. So,
2+1 indicates two source members and one member being added. The notation
1+2 indicates only one source member and two members being copied into the set.

The summary line provides the total number of shadow sets that were found to be
in the various conditions. ‘‘Operational shadow sets’’ are those shadow sets that
are mounted with one or more members and may or may not have copy or merge
operations occurring. These shadow sets are available to applications for reads
and writes. ‘‘Mount Verification’’ indicates the number of shadow sets that are

6–22 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.12 Prioritizing Merge and Copy Operations

in some mount verification state. Shadow sets that have exceeded their mount
verification timeout times are also included in this total.

For additional examples, see the HP OpenVMS DCL Dictionary.

6.12.5 Controlling Which Systems Manage Merge and Copy Operations
When a system fails or aborts a shadow set, this significant event causes every
shadow set to be reassessed by all other systems with that shadow set mounted.
All active minimerge, full merge, or copy operations cease at this time, returning
their resources to those systems. (However, if a system is performing a minicopy
operation, that operation continues to completion.)

Those systems wait a predetermined amount of time, measured in seconds, before
each attempts to manage any shadow set in a transient state. This pause is
called a significant-event recovery delay. It is the total of the values specified
for two system parameters, SHADOW_REC_DLY and RECNXINTERVAL. (The
default value for each is 20 seconds.)

If the value of the significant-event recovery delay is the same on all systems, it is
not possible to predict which systems will manage which shadow set. However, by
making the value of the significant-event recovery delay different on all systems,
you can predict when a specific system will begin to manage transient-state
operations.

6.12.6 Managing Merge Operations
A merge transient state is an event that cannot be predicted. The management
of merge activity, on a specific system for multiple shadow sets, can be predicted
if the priority level settings for the shadow sets differ.

In the following example, there are four shadow sets, and the SHADOW_MAX_
COPY parameter on this system is equal to 1. The value of 1 means that only
one merge or copy operation can occur at the same time. This example illustrates
how the priority level is used to select shadow sets when only merge operations
are involved.

Two shadow sets are assigned a priority level and two have the default priority
level of 5000.

The four shadow sets DSA1, DSA20, DSA22, and DSA42, are mounted on two
systems. DSA20 and DSA42 are minimerge enabled.

$ SET SHADOW/PRIORITY=7000 DSA1:
$ SET SHADOW/PRIORITY=3000 DSA42:
! DSA20: and DSA22: are at the default priority level of 5000

In this example, when one of the systems fails, all shadow sets are put into a
merge-required state. After the significant-event recovery delay time elapses,
this system evaluates the shadow sets, and the operations are performed in the
following order:

1. A minimerge operation starts first on DSA20, even though its priority of 5000
is lower than DSA1’s priority of 7000. A minimerge operation always takes
precedence over other operations. DSA20 and DSA42 are both minimerge
enabled, but DSA20’s higher priority causes its minimerge operation to start
first.

2. A minimerge operation starts on DSA42. Its priority of 3000 is the lowest of
all the shadow sets, but a minimerge operation takes precedence over other
operations.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–23

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.12 Prioritizing Merge and Copy Operations

3. Because there are no other minimerge capable units, DSA1, with a priority
level of 7000, is selected to start a merge operation, and it runs to completion.

4. A merge operation starts on DSA22, the one remaining shadow set whose
priority is the default value of 5000, and runs to completion.

6.12.7 Managing Copy Operations
A copy transient state can be predicted by the user because it is the result of
direct user action. Therefore, a full copy operation caused by adding a device to a
shadow set is not considered a significant event in the cluster. The copy operation
is managed by the first system that has an available resource.

In the following example, assume there are four shadow sets, and the SHADOW_
MAX COPY parameter on this system is equal to 1. Recall that the shadow sets
that are not assigned a specific level will have a default priority level assigned.

For the following example, assume that:

• DSA1, DSA20, DSA22, and DSA42 are mounted on multiple systems.

• Only DSA42 is minimerge enabled.

• DSA22 is already in a full copy state being managed on this system.

• DSA1 has a priority level of 7000.

• DSA42 has a priority level of 3000.

• DSA20 has a priority level of 3000.

• DSA22 has a default priority level of 5000.

The user adds a device to DSA1. This is not a significant event, and this system
will not interrupt the full copy operation of the DSA22 in favor of performing the
DSA1 full copy operation.

To expand on this example, assume that a system fails (a significant event) before
the copy operations have completed. All shadow sets will be put into a merge
required state. Specifically, DSA1, DSA20, and DSA22 are put into a full merge
state, and DSA42 is put into a minimerge state.

After the significant event recovery delay expires, this system begins to evaluate
all the shadow sets in a transient state. The operations take place in the
following order:

1. A minimerge operation starts on DSA42 and continues until completion. This
operation takes priority over other operations, regardless of its priority level.

2. A copy operation starts on DSA1. The full merge operation is not started
because a copy operation takes precedence over a full merge operation.

3. A merge operation is started and completed on DSA1.

4. A copy operation is started and completed on DSA22.

5. A merge operation is started and completed on DSA22.

6. A merge operation is started and completed on DSA20.

Thus, in this example, the priority level is used to direct the priority of merge
and copy operations on this system.

6–24 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.12 Prioritizing Merge and Copy Operations

6.12.8 Managing Transient States in Progress
SHADOW_MAX_COPY is a dynamic system parameter that governs the use
of system resources by shadowing. Shadowing can be directed to immediately
respond to changes in this parameter setting with the following DCL command:

$ SET SHADOW/EVALUATE=RESOURCES

This command stops all the current merge and copy operations on the system on
which it is issued. It then restarts the work using the new value of SHADOW_
MAX_COPY.

This command is also useful in other circumstances. For example, if a
shadow set had a priority level of 0 or another low value, the SET SHADOW
/PRIORITY=n command can be used to increase the value. Then, by using the
/EVALUATE=RESOURCES qualifier, the priority of shadow sets in a transient
state is reevaluated.

The /PRIORITY and /EVALUATE=RESOURCES command qualifiers can be used
on the same command line.

When a significant event occurs, all of the SHADOW_MAX_COPY resources
are applied. If the value of SHADOW_MAX_COPY is modified using the
SYSGEN SET and WRITE ACTIVE commands, and then a SET SHADOW
/EVALUATE=RESOURCES is issued, the new value of SHADOW_MAX_COPY
has a direct and immediate affect.

To determine which system is controlling a transient operation, enter the
following command:

$ SHOW SHADOW/ACTIVE DSAn:

To determine the priority values assigned to each shadow set, enter the following
command:

$ SHOW SHADOW/BY_PRIORITY DSAn:

6.13 Visible Impact of Transient State Events
Table 6–1 summarizes the user-visible impact of transient state events from the
viewpoint of a shadow set on one system in an OpenVMS Cluster system. For
each type of transient state event, the effects on the shadow set, when a merge
(full merge, HBMM, or controller minimerge) or copy (full or minicopy) operation
was already underway, are listed. The terms Canceled, Restarted, Continued,
and Suspended, described in the table key have the same meaning in this table
as in Volume Shadowing for OpenVMS messages.

Note also the following characteristics of merge and copy operations:

• If both a merge and a copy are pending on a shadow set, the merge is
done before the copy if and only if the merge is a minimerge. This applies
to controller-based minimerges, host-based minimerges, full copies, and
minicopies.

• If an event that specifies a delay occurs during the delay for some prior event,
no additional delay is incurred. The merges or copies required for the current
event are considered when the prior delay expires.

• If an event that specifies no delay occurs during the delay for some prior
event, the merges or copies required for the ‘‘no delay’’ event are not
considered until the prior delay expires.

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–25

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.13 Visible Impact of Transient State Events

Table 6–1 Visible Impact of Transient State Events

Event 1
Shadow Set
(SS) Focus

New
work
required

What happens to prior merge/copy on SS?
Delay2

Prior full
merge or
HBMM

Prior
controller
minimerge

Prior full
copy

Prior
minicopy

Failure of other
system that had at
least one mounted
SS in common with
this system.

All SSs
that were
mounted
on failed
system.

Merge
required.

Canceled
and is
restarted.

If on failed
system, it
restarts.
Otherwise,
minimerge
continues
with added
work.

Canceled but
is eventually
continued.

Canceled but
is eventually
continued.
Continued
as full copy
if minicopy
master
bitmap was
on failed
system.

Yes

All other SSs
with prior
merge or
copy state.

No new
work.

Canceled
but is
continued.

No change. Canceled but
is continued.

Canceled but
is continued.

Yes

Failure of a system
that did not have
any SS mounted in
common with this
system.

All other SSs
with prior
merge or
copy state.

No new
work.

No change. No change. No change. No Change. Yes

SS aborted on
another system,
with writes in
restart queue
on the aborting
system; SS is also
mounted on this
system.

Aborted SS. Merge
required.

Canceled
and is
restarted.

If on failed
system, it
restarts.
Otherwise,
minimerge
continues
with added
work.

Canceled but
is continued.

Canceled but
is continued.

Yes

All other SSs
with prior
merge or
copy state.

No new
work.

Canceled
but is
continued.

No change. Canceled but
is continued.

Canceled but
is continued.

Yes

Other system
dismounts a SS
that has a merge
or copy in progress
on its system; SS
is also mounted on
this system.

SS
dismounted
on other
system.

No new
work.

Continued. Restarted. Continued. Continued. No

1Each event is described from the perspective of one system in a cluster.
2Delay represents a predetermined length of time that elapses before the operation begins. It is the total of the values
specified for the SHADOW_REC_DLY and RECNXINTERVAL system parameters.
Key to Merge or Copy Operation Actions (same definitions as in shadowing messages)

Canceled—Operation is stopped so that it can be restarted or continued on any system that is eligible.
Restarted—Operation must start over again on the same system at LBN 0 when the operation is resumed.
Continued—Operation continues at the LBN where it left off when it was canceled or suspended.
Suspended—Operation is stopped such that the operation for that SS can be initiated, restarted, or continued only on
the same system where the suspended operation was active.

(continued on next page)

6–26 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.13 Visible Impact of Transient State Events

Table 6–1 (Cont.) Visible Impact of Transient State Events

Event 1
Shadow Set
(SS) Focus

New
work
required

What happens to prior merge/copy on SS?
Delay2

Prior full
merge or
HBMM

Prior
controller
minimerge

Prior full
copy

Prior
minicopy

All other SSs
with prior
merge or
copy state.

No
change.

No change. No change. No change. No change. No

A member is added
to a SS that is
mounted on this
system.

Specified SS. Copy
required.

Canceled
but is
continued.

No change. No change. No change. No

All other SSs
with prior
merge or
copy state.

No new
work.

No change. No change. No change. No change. No

Mount a SS that
requires a merge
or copy; SS is not
mounted on any
other system.

Specified SS. Copy
and/or
merge
required.

Restarted
as full
merge.

Restarted as
full merge.

Restarted. Restarted as
full copy.

No

SET SHADOW
/DEMAND_
MERGE command
issued on any
system for SS
mounted on this
system.

Specified SS
does not use
controller
minimerge.

Merge
required.

Restarted. Not
applicable.

Canceled but
is continued.

Canceled but
is continued.

No

Specified
SS uses
controller
minimerge.

Full
merge
required.

Restarted Suspended
and
restarted as
full merge.

Canceled but
is continued.

Canceled but
is continued.

No

All other SSs
with prior
merge or
copy state.

No
change.

No change. No change. No change. No change. No

1Each event is described from the perspective of one system in a cluster.
2Delay represents a predetermined length of time that elapses before the operation begins. It is the total of the values
specified for the SHADOW_REC_DLY and RECNXINTERVAL system parameters.
Key to Merge or Copy Operation Actions (same definitions as in shadowing messages)

Canceled—Operation is stopped so that it can be restarted or continued on any system that is eligible.
Restarted—Operation must start over again on the same system at LBN 0 when the operation is resumed.
Continued—Operation continues at the LBN where it left off when it was canceled or suspended.
Suspended—Operation is stopped such that the operation for that SS can be initiated, restarted, or continued only on
the same system where the suspended operation was active.

(continued on next page)

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS 6–27

Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS
6.13 Visible Impact of Transient State Events

Table 6–1 (Cont.) Visible Impact of Transient State Events

Event 1
Shadow Set
(SS) Focus

New
work
required

What happens to prior merge/copy on SS?
Delay2

Prior full
merge or
HBMM

Prior
controller
minimerge

Prior full
copy

Prior
minicopy

SET SHADOW
/EVAL=RESOURCES
command issued on
this system.

All SSs
mounted on
this system
with prior
merge or
copy state.

No
change.

Canceled
but is
continued.

No change. Canceled but
is continued.

Canceled but
is continued.

Yes

1Each event is described from the perspective of one system in a cluster.
2Delay represents a predetermined length of time that elapses before the operation begins. It is the total of the values
specified for the SHADOW_REC_DLY and RECNXINTERVAL system parameters.
Key to Merge or Copy Operation Actions (same definitions as in shadowing messages)

Canceled—Operation is stopped so that it can be restarted or continued on any system that is eligible.
Restarted—Operation must start over again on the same system at LBN 0 when the operation is resumed.
Continued—Operation continues at the LBN where it left off when it was canceled or suspended.
Suspended—Operation is stopped such that the operation for that SS can be initiated, restarted, or continued only on
the same system where the suspended operation was active.

6–28 Host-Based Minimerge (HBMM) in Volume Shadowing for OpenVMS

7
Linker Utility

This chapter provides an overview of the differences as well as considerations you
should review before linking programs on OpenVMS I64 systems. Major topics
include:

• Differences when linking on I64 systems as compared with linking on VAX
and Alpha systems (Section 7.1.1)

• New aspects of linking an image on OpenVMS I64 (Section 7.1.2)

• New linker qualifiers and options (Section 7.1.3, Section 7.1.4)

• New ways to use existing linker qualifiers and options (Section 7.1.5)

• Expanded linker map file information for I64 (Section 7.1.6)

For release notes on the linker, refer to the HP OpenVMS Version 8.2 Release
Notes.

7.1 Linker Utility New Features
The purpose of the linker is to create images (that is, files that contain binary
code and data). The linker ported to OpenVMS I64 is different from the linker on
OpenVMS VAX and Alpha systems because it accepts OpenVMS I64 object files
and produces OpenVMS I64 images. As on OpenVMS VAX and Alpha systems,
the primary type of image created is an executable image. This image can be
activated at the DCL command line by entering the RUN command.

The OpenVMS I64 Linker also creates shareable images. A shareable image is
a collection of procedures and data that are exported via the SYMBOL_VECTOR
option that can be called by executable images or other shareable images.
Shareable images are included in an input file via a link operation that creates
an executable or shareable image.

When linking modules, the primary type of input file to the OpenVMS I64 Linker
is the object file. Object files are produced by language processors such as
compilers or assemblers. Because the object files produced by these compilers
are unique to the Intel® Itanium® architecture, some aspects of linking modules
on OpenVMS I64 systems are different from linking on VAX and Alpha systems.
Overall, however, the OpenVMS I64 Linker interface as well as functional
capabilities (for example, symbol resolution, virtual memory allocation, and image
initialization) are similar to those on OpenVMS VAX and Alpha systems.

Linker Utility 7–1

Linker Utility
7.1 Linker Utility New Features

7.1.1 Differences When Linking on OpenVMS I64 Systems
Although linking on OpenVMS I64 systems is similar to linking on OpenVMS
Alpha systems, some differences exist. The following qualifiers or options are
ignored by the OpenVMS I64 linker:

• /REPLACE

• /SECTION_BINDING

• /HEADER

• PER_PAGE—The per_page keyword in /DEMAND_ZERO=PER_PAGE (the
per_page keyword will be supported in a future release, although with a
slightly different meaning)

• DZRO_MIN

• ISD_MAX

The following qualifiers and options are not allowed by the OpenVMS I64 Linker:

• /SYSTEM

• A file spec keyword with the /DEBUG= qualifier

• The base address must be null in CLUSTER=cluster_name,base_address . . .

• BASE=

• UNIVERSAL=

The following list contains new qualifiers that are supported by the OpenVMS
I64 Linker:

• /BASE_ADDRESS

• /SEGMENT_ATTRIBUTE

• /FP_MODE

• /EXPORT_SYMBOL_VECTOR

• /PUBLISH_GLOBAL_SYMBOLS

• The GROUP_SECTIONS and SECTION_DETAILS keywords for the /FULL
qualifier

These qualifiers and options are described in the following sections.

7.1.1.1 Data Types of Symbols must Match on I64
On OpenVMS Alpha, there can be a symbol that is defined as a piece of data
but referenced as if it were a function. There is no way, using the Alpha object
language, that this situation can be detected by the linker.

But on OpenVMS I64, the linker can detect a symbol’s data type mismatch. The
OpenVMS I64 linker receives information which marks a symbol as a function
(FUNC), a piece of data (OBJECT) or unknown (NOTYPE). It also receives
relocations which tell the linker when to create a function descriptor for symbols
that are defined or referenced as a function.

If the types of a symbol are not unknown (not NOTYPE), they must match. If the
definer sets the type as unknown, the referencer type cannot be a function.

7–2 Linker Utility

Linker Utility
7.1 Linker Utility New Features

For example, take the two modules FIRST.C and SECOND.C:

FIRST.C

#include <stdio.h>

int a;
int aa;
extern int second ();

void main () {

printf ("The address of ’a’ is %x\n", &a);
printf ("The address of ’aa’ is %x\n", &aa);
second ();

}

SECOND.C

#include <stdio.h>

extern int a();
extern int aa();

void second () {

printf ("The address of ’a’ is %x\n", &a);
printf ("The address of ’aa’ is %x\n", &aa);

}

When you link FIRST and SECOND, you get the following informational
messages (based on the symbol descriptors) and warning messages (based on
the relocations) from the linker:

$ link first,second
%ILINK-I-DIFTYPE, symbol AA of type OBJECT cannot be referenced as type FUNC

module: SECOND
file: DISK$USER:[JOE]SECOND.OBJ;5

%ILINK-I-DIFTYPE, symbol A of type OBJECT cannot be referenced as type FUNC
module: SECOND
file: DISK$USER:[JOE]SECOND.OBJ;5

%ILINK-W-RELODIFTYPE, relocation requests the linker to build a function
descriptor for a non-function type of symbol

symbol: A
relocation section: .rela$CODE$ (section header entry: 19)
relocation type: RELA$K_R_IA_64_LTOFF_FPTR22
relocation entry: 1
module: SECOND
file: DISK$USER:[JOE]SECOND.OBJ;5

%ILINK-W-RELODIFTYPE, relocation requests the linker to build a function
descriptor for a non-function type of symbol

symbol: AA
relocation section: .rela$CODE$ (section header entry: 19)
relocation type: RELA$K_R_IA_64_LTOFF_FPTR22
relocation entry: 4
module: SECOND
file: DISK$USER:[JOE]SECOND.OBJ;5

To eliminate these informational and warning messages, change the type of the
symbols "A" and "AA" to be a function or a piece of data. For example, change the
declarations in FIRST.C to functions:

Linker Utility 7–3

Linker Utility
7.1 Linker Utility New Features

#include <stdio.h>

int a();
int aa();
extern int second ();

void main () {

printf ("The address of ’a’ is %x\n", &a);
printf ("The address of ’aa’ is %x\n", &aa);
second ();

}

int a () {
return 1;

}

int aa () {
return 1;

}

After this change, your link will be free of informationals and warnings:

$ link first,second
$

Another alternative is to change the references to "A" and "AA" in SECOND to be
references to data.

7.1.1.2 Specifying Based Clusters Vary by OpenVMS Platform
Specifying a base address in the CLUSTER option is permitted only on VAX and
Alpha systems. On Alpha systems, only main images are allowed to contain based
clusters. VAX systems are more flexible; even shareable images are allowed to
contain based clusters. On I64 systems, specifying a base address in a CLUSTER
option is illegal for all images.

7.1.1.3 Handling of Initialized Overlaid Program Sections on OpenVMS I64 Systems
On Alpha and VAX systems, initializations can be done to portions of an overlaid
program section. Subsequent initializations to the same portions overwrite
initializations from previous modules. The last initialization performed on any
byte is used as the final one of that byte for the image being linked.

On I64 systems, the ELF object language currently does not implement the
feature of the Alpha and VAX object language which allows the initialization
of portions of the program sections. When an initialization is made, the
entire section is initialized. Subsequent initializations of this section may be
performed only if the nonzero portions match in value. This is called a compatible
initialization.

For example, the following condition produces different results on OpenVMS I64
systems than on Alpha systems:

Two program sections, each declaring two longwords, are overlaid. The first
program section initializes the first longword and the second program section
initializes the second longword with a nonzero value.

On Alpha systems, the linker is able to produce an image section with the first
and second longword initialized. The VAX and Alpha object languages give the
linker the section size and the Text Information Relocation (TIR) commands to
initialize each longword.

7–4 Linker Utility

Linker Utility
7.1 Linker Utility New Features

On I64 systems, the linker gets sections that contain initialization data from the
compilers. The linker does not perform or know about the initializations, because
there are no TIR commands in ELF. The linker then produces an image segment
using the last processed program section for initialization. That is, in the image
either the first or second longword has a nonzero value, depending on the order in
which they were linked. Although an image is produced, the linker regards this
as an error and issues a message.

On I64 systems, the linker reads all the applicable initializations and checks for
compatibility. Any two initializations are compatible if they are identical in the
nonzero values. If they are not compatible, the linker issues the following error
message:

%ILINK-E-INVOVRINI, incompatible multiple initializations for
overlaid section

section: <section name>
module: <module name for first overlaid section>
file: <file name for first overlaid section>
module: <module name for second overlaid section>
file: <file name for second overlaid section>

In this error message, the linker lists the first module, which contributes a
nonzero initialization, and the first module with an incompatible initialization.
Note that this is not a full list of all incompatible initializations; it is just the first
one the linker encounters.

In the Program Section Synopsis of the linker map, each module with a nonzero
initialization is flagged as "Initializing Contribution". Use this information to
identify and resolve all the incompatible initializations.

The following example shows the additional information in the map file (see
Example 7–1):

$ cre one.c
int common_data[]={0,0,47,11};
[Exit]
$ cc /extern=common one
$
$ cre two.c
int common_data[]={0,0,47,11};
[Exit]
$ cc /extern=common two
$
$ cre three.c
int common_data[]={0,0,0,0,0,0,0,0};
[Exit]
$ cc /extern=common three
$
$ link/map one,two,three
.
.
.

Example 7–1 shows the program section synopsis of the linker map for the above
example. Note that the Align and Attributes fields normally continue after the
Length field but were modified to fit on the page.

Linker Utility 7–5

Linker Utility
7.1 Linker Utility New Features

Example 7–1 Linker Map Showing Program Section Synopsis

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module/Image Base End Length
---------- ------------ ---- --- ------
COMMON_DATA 00010000 0001001F 00000020 (32.)

ONE 00010000 0001000F 00000010 (16.)
TWO 00010000 0001000F 00000010 (16.)
THREE 00010000 0001001F 00000020 (32.)

Align Attributes
----- ------------
OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC, MOD
OCTA 4 Initializing Contribution
OCTA 4 Initializing Contribution
OCTA 4

Another example shows an incompatible initialization and the resulting linker
message:

$ cre four.c
int common_data[]={0,0,47,11,0,0,17,4};
[Exit]
$ cc /extern=common four
$
$link one,two,three,four
%ILINK-E-INVOVRINI, incompatible multiple initializations for
overlaid section

section: COMMON_DATA
module: ONE
file: DISK$USER:[JOE]ONE.OBJ;1
module: FOUR
file: DISK$USER:[JOE]FOUR.OBJ;1

The examples were compiled with the extern common model. For VMS the
default extern model is the relaxed refdef model. In that model, there is only one
explicit initialization that is allowed. That is, even identical initializations result
in a linker warning message, the multiply defined message. Here is an example,
which uses the same source files as above:

$ cc one
$ cc two
$ cc three
$
$ link one, two, three
%ILINK-W-MULDEF, symbol COMMON_DATA multiply defined

module: TWO
file: DISK$USER:[JOE]TWO.OBJ;2

%ILINK-W-MULDEF, symbol COMMON_DATA multiply defined
module: THREE
file: DISK$USER:[JOE]THREE.OBJ;2

For an additional incompatible initialization the linker shows both messages,
the INVOVRINI error and the MULDEF warning. And, for such a module, the
INVOVRINI, precedes the MULDEF message. In this case, the user has to fix
the MULDEF warning to get rid of the INVOVRINI error.

7–6 Linker Utility

Linker Utility
7.1 Linker Utility New Features

$ cc four
$
$ link one,two,three,four
%ILINK-W-MULDEF, symbol COMMON_DATA multiply defined

module: TWO
file: DISK$USER:[JOE]TWO.OBJ;2

%ILINK-W-MULDEF, symbol COMMON_DATA multiply defined
module: THREE
file: DISK$USER:[JOE]THREE.OBJ;2

%ILINK-E-INVOVRINI, incompatible multiple initializations for
overlaid section

section: COMMON_DATA
module: ONE
file: DISK$USER:[JOE]ONE.OBJ;2
module: FOUR
file: DISK$USER:[JOE]FOUR.OBJ;2

%ILINK-W-MULDEF, symbol COMMON_DATA multiply defined
module: FOUR
file: DISK$USER:[JOE]FOUR.OBJ;2

7.1.1.4 Behavior Difference When Linking ELF Common Symbols
The I64 linker behaves differently when ELF common symbols (or, on Alpha,
relaxed refdef symbols) are linked selectively against an image that contains
a definition for the same symbol. On Alpha, the linker incorrectly takes the
definition from the relaxed refdef symbol in your module. The I64 linker takes
the definition from the shareable image.

For example, a shareable image is linked from the following module (my_int.c):

#include ints
uint64 my_int ;
$cc/extern=relaxed my_int.c
$link/map/full/cross/share my_int,sys$input/opt
symbol_vector=(my_int=data)

Next, another C module (x.c) is selectively linked against my_$int.exe. Note that
the object is compiled with the relaxed extern model. The result is a conditional
reference/definition generated for my_int.

#include ints
uint64 my_int;
main()
{
my_int = 1;
return;
}

$cc/extern=relaxed x.c
$link/map/full/cross sys$input/opt
cluster=myclu,,,x.obj
my_int.exe/share/select

The Alpha linker incorrectly defines my_int from the module’s conditional
definition of my_int. The I64 linker correctly retrieves the definition from my_
int.exe.

The Alpha linker is not being changed to preserve those cases that rely upon this
behavior. The I64 linker performs the selection operation correctly.

Linker Utility 7–7

Linker Utility
7.1 Linker Utility New Features

7.1.1.5 Flags Set When /TRACEBACK, /DEBUG, and /DSF are Used
When the /TRACEBACK, /DEBUG and /DSF linker debug qualifiers are specified,
the following flags are set for the image activator. These flags are set in the
dynamic segment under the tag value DT_VMS_LNKFLAGS. Note that the
meanings of the /TRACEBACK, /DEBUG and /DSF qualifiers have not changed
from Alpha, but the meanings and the names of the flags have changed.

Flag Meaning

VMS_LF_IMGSTA Image execution is to begin by calling SYS$IMGSTA.
The image activator includes SYS$IMGSTA as the first
address in the (traditional VMS style) transfer vector.

VMS_LF_CALL_DEBUG SYS$IMGSTA checks this flag to determine whether it
calls the debugger.

VMS_LF_TBK_IN_IMG Traceback records are present in the image file.

VMS_LF_DBG_IN_IMG Debug information is present in the image file.

VMS_LF_TBK_IN_DSF Traceback records are present in the DSF file.

VMS_LF_DBG_IN_DSF Debug information is present in the DSF file.

The flags will be set according to the following table:

Qualifier IMGSTA
CALL_
DEBUG

TBK_IN
_IMG

DBG_IN
_IMG

TBK_IN
_DSF

DBG_IN
_DSF

/NoTrace/NoDebug
/NoDSF

0 0 0 0 0 0

/Trace/NoDebug
/NoDSF

1 0 1 0 0 0

/NoTrace /Debug
/NoDSF

1 1 1 1 0 0

/Trace /Debug
/NoDSF

1 1 1 1 0 0

/NoTrace /NoDebug
/DSF

0 0 0 0 1 1

/Trace /NoDebug
/DSF

1 0 1 0 1 1

/NoTrace /Debug
/DSF

1 1 1 0 1 1

/Trace /Debug
/DSF

1 1 1 0 1 1

Notes

• The value of SYS$IMGSTA is no longer included in the image’s transfer
array; only a flag that indicates it is to be called. The image activator knows
the value of SYS$IMGSTA.

• These flags do not appear in a DSF file. DSF files are not activated by the
image activator (they have no dynamic segment and therefore no DT_VMS_
LNKFLAGS field).

• The Linker no longer supports /DEBUG=filename on I64 systems. Link
alternative debuggers as a separate image and then define LIB$DEBUG to
point to that image. SYS$IMGSTA always calls whatever is pointed to by
LIB$DEBUG.

7–8 Linker Utility

Linker Utility
7.1 Linker Utility New Features

• When /DSF is specified, along with /TRACEBACK or /DEBUG, the VMS_
LF_TBK_IN_IMG (traceback in image) flag will be set. This is a change
in behavior from the behavior on Alpha, where traceback records were
not included in the image when /TRACEBACK/DSF or /DEBUG/DSF was
specified. Note that debugger records do not get copied to an image whenever
/DEBUG/DSF is specified. Here, /DEBUG only causes the IMGSTA bit to be
set in the image.

The following table indicates where global symbol definitions are written during a
link operation for an image that does not use the SYMBOL_TABLE or SYMBOL_
VECTOR option.

Qualifier Global Symbols in Image
Global Symbols in
DSF File

/NoTrace/NoDebug/NoDSF 0 0

/Trace/NoDebug/NoDSF 0 0

/NoTrace/Debug/NoDSF 1 0

/Trace /Debug/NoDSF 1 0

/NoTrace/NoDebug/DSF 0 1

/Trace/NoDebug/DSF 0 1

/NoTrace/Debug/DSF 0 1

/Trace/Debug/DSF 0 1

7.1.2 New Aspects for Linking on OpenVMS I64 Systems
The following sections describe aspects of linking images on I64 systems that are
unique to the platform. Topics include:

• Understanding linkage messages (Section 7.1.2.1)

• Considerations for Images Compiled with Reduced Floating Point Model
(Section 7.1.2.2)

• Considerations for Linking with ELF Groups and UNIX-style weak Symbols
(Section 7.1.2.3)

• Use of the new /BASE_ADDRESS Qualifier (Section 7.1.3.1)

• Use of the new /SEGMENT_ATTRIBUTE Qualifier (Section 7.1.3.2)

• Use of the new /FP_MODE Qualifier (Section 7.1.3.3)

• Use of the new /EXPORT_SYMBOL_VECTOR and /PUBLISH_GLOBAL_
SYMBOLS qualifiers (Section 7.1.3.4)

• Use of the new GROUP_SECTIONS and SECTION_DETAILS keywords for
the /FULL Qualifier (Section 7.1.3.5)

• New Alignments for the PSECT_ATTRIBUTE Option (Section 7.1.4.1)

Linker Utility 7–9

Linker Utility
7.1 Linker Utility New Features

7.1.2.1 Understanding Linkage Messages
Some HP compilers produce call linkage information that verifies the linkage of
a caller or a called routine to determine consistent use of the general registers
across modules. Linkage information is supplied for only the general registers 0
through 31. Conflicts arise when the linkage information indicates a problem.

The following example shows a warning message that displays when the linker
detects a linkage conflict:

%ILINK-W-LNKGERR, linkage to routine X is not compatible with
linkage of caller

calling module: MOD_SRC
file: DISK:[DIR]SOURCE.OBJ;1

target module: MOD_TARG
file: DISK:[DIR]TARGET.OBJ;1

source type of JSB to target type of CALL
register AI not provided (needed at target)
register GP not provided (needed at target)
IA64 register R19 (Alpha R21) -- call=PRESERVE, target=VOLATILE

Following the display of the source and target information are messages that
indicate the nature of the conflict or conflicts that caused the warning message to
be displayed. If a caller does not provide argument information in the argument
information register (AI) when the target routine requires the AI, the linker will
generate a message similar to the one in the above example.

In addition to missing required information, inconsistent or incompatible use of
the general registers can also cause a linkage conflict. The linkage information
contains register policies for the general registers, which are as follows:

• Volatile: A register with this policy may not be used to pass information
between procedures, either as input or output.

• Scratch: A register with this policy may be modified by the called procedure.

• Output: A register with this policy may be used to pass information back to
the calling procedure.

• Preserve: A register with this policy must have its contents saved and then
restored, if it is to be used by the target routine.

The register policies of a standard linkage call are as follows:

Intel® Itanium® Register Policy

R2 Volatile

R3 Scratch

R4 - R7 Preserve

R8 - R9 Output

R10 -R11 Scratch

R12 - R18 Volatile

R19 - R24 Scratch

R26 - R31 Scratch

A standard procedure call uses the CALL mechanism and provides the Global
Pointer (GP) value and the AI register fill with the argument information.

7–10 Linker Utility

Linker Utility
7.1 Linker Utility New Features

The following table indicates compatible policies between the caller’s register
policies (row heading) and the target routine’s register policies (column heading):

Caller Target

Volatile Scratch Output Preserve

Volatile X

Scratch X X

Output X X

Preserve X

In the sample message:

IA64 register R19 (Alpha R21) - call-PRESERVE, target=VOLATILE

Intel® Itanium® register R19 has a caller register policy of "Preserve" but a
target routine register policy of "Volatile". Based on the above table, R19 is not
compatible between the caller and the target routines.

Additionally, the calling mechanism between the routines is not compatible. This
occurs because the caller is performing a JumptoSuBroutine (JSB) to the target
routine when the target routine is expecting a CALL mechanism to be used.

Certain Intel® Itanium® registers must be defined to have specific policies. If
these registers do not contain the correct policies, the linker will issue a warning
indicating that either the target linkage is invalid (1) or a message of the caller is
invalid (2):

(1) %ILINK-W-INVLNKG, invalid target linkage for symbol INV_LNKG

(2) %ILINK-W-INVRLNKG, invalid call linkage for symbol INV_LNKG

The following table lists the Intel® Itanium® general registers that have specific
policies:

Intel® Itanium® Register Policy

R2 Volatile

R12 - R18 Volatile

Explanation of Potential Conflicts that Result in Linkage Messages
Some conflicts arise when performing cross language calls (for example, IMACRO
to BLISS), where the calling standards for OpenVMS differ between Alpha
and I64 systems. There are fewer registers preserved by default with the
Intel® Itanium® version of the calling standard. Because of this, there may
be assumptions about registers that are saved at the target routine and registers
that are not saved.

Linkage statement mismatches also cause the linker to display warning
messages. For example, if a calling routine is expecting register R12-R15 (Alpha
register numbers) to be preserved but the target does not preserve them, the
linker will list registers R20, R21, R30, and R31 as having a linkage problem but
will include the Alpha register numbers in parentheses.

Linker Utility 7–11

Linker Utility
7.1 Linker Utility New Features

Additionally, a problem can exist when registers that are not properly declared
for the function they are serving, for example, declaring registers to return values
as NOPRESERVE rather than OUTPUT.

To correct these potential conflicts, examine the declaration and definition
linkages for all cases the linker indicates and correct these problems to ensure a
clean link operation. Because the linker considers these conflicts warnings, the
completion code status of the image will not be set to SUCCESS. For a shareable
image, this means that images linked against a shareable image with linkage
issues will, themselves, receive a completion status other than SUCCESS.

7.1.2.2 Considerations for Images Compiled with Reduced Floating Point Model
On OpenVMS I64 systems, images using a reduced floating point model will run
more quickly during interrupts because only a reduced number of floating point
registers need to be saved and restored. Note that some integer arithmetic is
done using floating point registers. The resulting image can be run in a reduced
floating point mode only if all object modules that contribute to the image have
been compiled with the reduced floating point model. The Object and Image
Synopsis section of the linker map file indicates if the modules have the reduced
floating point model.

7.1.2.3 Considerations for Linking with ELF Groups and UNIX-style Weak Symbols
The Intel C++ compiler introduced the use of Executable and Linking Format
(ELF) Groups (that is, COMDATs) and UNIX-style Weak symbols that the Linker
(and the Librarian) must correctly handle.

ELF groups in object modules can be seen as tentative code and data
contributions with definitions for variables and procedures. The C++ compiler
makes use of this feature for C++ templates. The compiler simply generates
code and data for a template: a group. In such an environment multiple object
modules will have multiple identical contributions with the same code and data.
For the image, the linker selects one contribution from each group. So the result
of linking multiple object modules with multiple identical groups is one instance
of code and data per group in the image.

An ELF group has a name, also called group signature. Groups are as seen
identical if they have the same name. Symbols can belong to a group; they are
called group symbols.

As usual, group symbols can be used for definitions or references. The UNIX-
style weak definition differs from the VMS-style weak definition (Alpha and VAX):
there can be multiple UNIX-style weak definitions. UNIX-style weak references
are similar to the Alpha and VAX style references: when they are unresolved,
they do not cause an error or warning.

UNIX-style Weak symbols from an ELF Group take the first occurrence of the
specific group as the defining instance. All subsequent definitions of these
UNIX-style Weak symbols from other occurrences of that group are then seen
as references to the first instance. UNIX-style Weak symbols are, by design,
tentative. If present, and if there is no occurrence of a strong definition elsewhere
among the other modules or images of the link, the first encountered UNIX-style
Weak version of the symbol is regarded as the defining instance.

A strong definition overwrites a UNIX weak definition, which becomes a
reference. The other UNIX weak symbols of the same group become references.
This does not create a problem: all symbols, including strong definitions,
are generated by the compiler or defined in the run time environment.
Understanding this mechanism helps to understand the linker map.

7–12 Linker Utility

Linker Utility
7.1 Linker Utility New Features

UNIX weak symbols defined in a group can be referenced by non-weak symbols
outside a group.

The cross reference list in the map has a UNIX weak tag in front of UNIX weak
definitions and references. Typically, the UNIX weak tagged definitions are
the result of selecting a group from an object module. The UNIX weak tagged
references are usually a result of a secondary occurrence of the same group. An
untagged definition with a UNIX weak tagged reference is usually a result of a
strong definition overwriting a group symbol from an object module. The tagging
in the cross reference table enables the user to see which module was selected as
owning the defining instance of the symbol.

The cross reference does not list the group signatures (that is, their names).
The ANALYZE utility can be used to find all symbols belonging to a group.
Additionally, you can ask the linker for a list of all groups and their defining
modules and files by using the /MAP/FULL=GROUP_SECTIONS qualifiers.

User-written templates can be linked as a shareable image. Symbols that are
exported (made universal) by a shareable image are always strong definitions.
With the precedence of strong definitions over UNIX weak ones, the code and
data of the shareable image is the linker selected contribution. For OpenVMS
I64, the grouping of symbols is preserved in the shareable image as well. In this
case, where all the symbols are strong definitions, a group from a shareable image
always takes precedence over all identical groups in object modules.

There is one difference between groups in a shareable image and groups in an
object module. If the same group is seen in another shareable image, the linker
warns of a second occurrence of the group. In this case, the resulting image
may not behave as expected. Code and data from the first occurrence of the
group will be used by all object modules within the defining shareable image, but
code and data from the other occurrences will be used within the other defining
shareable images. When linking a shareable image, make sure that all symbols
of all groups making up the template implementation are exported. Otherwise,
redundant code and data may appear in the resulting image, or - as mentioned
above - wrong code or data may be used.

The original OpenVMS-style weak symbols continue to be processed in the same
manner as before.

7.1.3 New Linker Qualifiers for OpenVMS I64
Some new linker qualifiers have been added to support linking on OpenVMS I64
systems. This section describes these features.

7.1.3.1 New /BASE_ADDRESS Qualifier
A new qualifier, /BASE_ADDRESS, is provided on I64 systems. The base address
is the starting address that you want the linker to assign to an executable image.
The purpose of this qualifier is to assign a virtual address for images which are
not activated by the OpenVMS image activator, such as images used in the boot
process. The OpenVMS image activator is free to ignore any linker-assigned
starting address. This qualifier is primarily used by system developers.

The /BASE_ADDRESS qualifier does not replace the CLUSTER=,[base-address]
option, which is illegal on OpenVMS I64. See Section 7.1.1.2.

Linker Utility 7–13

Linker Utility
7.1 Linker Utility New Features

7.1.3.2 New /SEGMENT_ATTRIBUTE Qualifier
The OpenVMS I64 Linker provides a new /SEGMENT_ATTRIBUTE qualifier that
accepts two keywords: SHORT_DATA=WRITE and DYNAMIC_SEGMENT=P0 or
P1. The /SEGMENT_ATTRIBUTE qualifier uses the following syntax:

/SEGMENT_ATTRIBUTE=([DYNAMIC_SEGMENT=(P0 | P2)], [SHORT_DATA=WRITE])

By default, the linker puts the dynamic segment, which contains information for
the image activator, into P2 space. But by specifying DYNAMIC=P0, it forces
the linker to put the dynamic segment into P0 space. As such, the DYNAMIC_
SEGMENT keyword is rarely needed.

The SHORT_DATA=WRITE keyword allows you to combine read-write and
read/write short data sections into a single segment, reclaiming up to 65,535
bytes of unused read-only space. When setting SHORT_DATA to WRITE, your
program may accidentally write to formerly read-only data. Therefore this
qualifier is only recommended for users whose short data segment has reached
the limit of 4 MB.

7.1.3.3 New /FP_MODE Qualifier
The OpenVMS I64 Linker determines the program’s initial floating point mode
using the floating point mode provided by the module that provides the main
transfer address. Use the /FP_MODE qualifier to set an initial floating point
mode only if the module that provides the main transfer address does not provide
an initial floating point mode. The /FP_MODE qualifier will not override an
initial floating point mode provided by the main transfer module.

The OpenVMS I64 Linker accepts the following keywords to set the floating point
mode:

• D_FLOAT, G_FLOAT—Sets VAX floating point modes.

• IEEE_FLOAT[=ieee_behavior]—Sets the IEEE floating point mode to the
default or a specific behavior.

The OpenVMS I64 Linker accepts the following IEEE behavior keywords:

• FAST

• UNDERFLOW_TO_ZERO

• DENORM_RESULTS (default)

• INEXACT

The OpenVMS I64 Linker also accepts a floating point mode behavior literal. For
more information about the initial floating point mode, see the HP OpenVMS
Calling Standard.

7.1.3.4 New Linker Qualifiers: /EXPORT_SYMBOL_VECTOR and
/PUBLISH_GLOBAL_SYMBOLS

The /EXPORT_SYMBOL_VECTOR and /PUBLISH_GLOBAL_SYMBOLS
qualifiers were added to the linker to aid users who are creating shareable images
but do not know which symbols to export through the SYMBOL_VECTOR option.
(Users may have been porting an application from UNIX and were unfamiliar
with the application, such that they did not know which symbols to export.
Another possible scenario is that because they were coding in C++, they were not
able to know what the mangled names looked like.)

7–14 Linker Utility

Linker Utility
7.1 Linker Utility New Features

The new /PUBLISH_GLOBAL_SYMBOLS qualifier marks an object module so
that all its global symbols can be exported in a symbol vector option. The new
/EXPORT_SYMBOL_VECTOR qualifier writes a symbol vector option for each
global symbol in modules marked with /PUBLISH_SYMBOL_VECTOR to the
output file. When /EXPORT_SYMBOL_VECTOR is present, only the option
file is written; no image file is generated. The generated option file needs to be
completed with GSMATCH information by the developer for use in a future link.

Both qualifiers are only accepted if the /SHAREABLE qualifier is present.
/EXPORT_SYMBOL_VECTOR is a command line only qualifier. /PUBLISH_
GLOBAL_SYMBOLS can be used in option files as well. The linker will issue a
warning if there is an /EXPORT_SYMBOL_VECTOR qualifier but no /PUBLISH_
GLOBAL_SYMBOLS qualifier is seen.

/EXPORT_SYMBOL_VECTOR=[file-spec]
/EXPORT_SYMBOL_VECTOR instructs the I64 linker to create an options file
with a symbol vector option filled in as directed by the /PUBLISH_GLOBAL_
SYMBOLS qualifier, plus a template GSMATCH option.

Using the /EXPORT_SYMBOL_VECTOR qualifier prohibits image production.

If /EXPORT_SYMBOL_VECTOR is given, symbol_vector options as input are not
allowed.

At least one /PUBLISH_GLOBAL_SYMBOLS must be on the command line or in
an option.

The qualifier also specifies the character string you want the linker to use as the
name of the options file that the link operation produces. If you do not specify a
file type in the character string, the linker assigns the .OPT file type by default.
If you do not specify a file name with the /EXPORT_SYMBOL_VECTOR qualifier,
the linker creates an options file with the file name of the first input file.

If you append the /EXPORT_SYMBOL_VECTOR qualifier to an input file
specification, the linker creates an options file with the file name of the file to
which the qualifier is appended.

After filling in the GSMATCH template option, the generated options file should
be used in another link operation to create the shareable image file.

/PUBLISH_GLOBAL_SYMBOLS
The /PUBLISH_GLOBAL_SYMBOLS qualifier instructs the I64 linker to mark
an object module or object module library for exporting all its global symbols to
a symbol vector options file as requested by the /EXPORT_SYMBOL_VECTOR
qualifier.

The qualifier can only be used with the /SHAREABLE and /EXPORT_SYMBOL_
VECTOR qualifiers.

The qualifier is compatible with the /INCLUDE and /SELECTIVE_SEARCH
qualifiers. The qualifier can be used on the command line and in a linker option.

If the qualifier is applied to an object file, all global symbols from all modules in
that file are candidates to be exported as a symbol vector option.

If the qualifier is applied to an object file in combination with the /SELECTIVE_
SEARCH qualifier, only referenced global symbols from all modules in that file
are candidates to be exported as a symbol vector option.

Linker Utility 7–15

Linker Utility
7.1 Linker Utility New Features

If the qualifier is applied to an object library, all global symbols from all modules
of the object library, which were implicitly included in the image, are candidates
to be exported as a symbol vector option.

If the qualifier is applied to an object library in combination with the /INCLUDE
qualifier, all global symbols from the modules in the include list of the object
library are candidates to be exported as a symbol vector option.

If the qualifier is applied to an object library built with the /SELECTIVE_
SEARCH qualifier, only referenced global symbols from all modules of the object
library, which were included in the image, are candidates to be exported as a
symbol vector option. (See the HP OpenVMS Command Definition, Librarian,
and Message Utilities Manual for how to insert modules in a library that can be
selectively searched.)

If the global symbol is a tentative definition (that is, from the C relaxed refdef
extern model) in several modules it is published if one of the modules is marked
with /PUBLISH. Similarly, for UNIX weak symbols, any of the modules can make
this a candidate to be exported as a symbol vector option. However, for both
symbol types, if symbols are overwritten by strong definitions, the presence of
/PUBLISH from the defining module determines if the symbols are candidates to
be exported as a symbol vector option.

Examples:

$ link/SHARE public/PUBLISH,implementation/EXPORT=public
$ link/SHARE plib/LIBRARY/PUBLISH/INCLUDE=public/EXPORT=public
$ LINK/SHAREABLE public/PUBLISH, implementation/EXPORT=public

All the global symbols from the modules in PUBLIC.OBJ are exported as a
symbol vector option to the file PUBLIC.OPT.

$ LINK/SHAREABLE api_table,implementation/PUBLISH/SELECTIVE/EXPORT=public

Only the global symbols from the modules in IMPLEMENTATION.OBJ, which
are referenced from modules in API_TABLE.OBJ are exported as a symbol vector
option to the file PUBLIC.OPT.

$ LINK/SHAREABLE api_table,plib/LIBRARY/PUBLISH/EXPORT

All the global symbols from the all modules of the library PLIB.OLB, which are
included in the shareable image are exported as a symbol vector option to the file
PLIB.OPT.

$ LINK/SHAREABLE plib/LIBRARY/PUBLISH/INCLUDE=public/EXPORT

All the global symbols from the module public of the library PLIB.OLB are
exported as a symbol vector option to the file PLIB.OPT.

$ LINK/SHAREABLE api_table, plib/LIBRARY/PUBLISH/SELECTIVE/EXPORT=public

All the global symbols from all the modules of the library PLIB.OLB, which are
referenced from all the modules in api_table, exported as a symbol vector option
to the file PUBLIC.OPT. And similar examples with /PUBLISH used in an options
file, are in the following:

$ link/SHAREABLE TT:/opt/EXPORT public/PUBLISH, implementation

All the global symbols from the modules in PUBLIC.OBJ are exported as a
symbol vector option to TT: that is printed to the terminal.

7–16 Linker Utility

Linker Utility
7.1 Linker Utility New Features

7.1.3.5 New GROUP_SECTIONS and SECTION_DETAILS keywords for the /FULL Qualifier
The OpenVMS I64 Linker takes two keywords to the /FULL qualifier that direct
the linker to create a full image map. The format of the /FULL qualifier is:

/FULL [=(keyword [,...])]

The OpenVMS I64 Linker accepts the following keywords to tailor the map (the
default is /FULL=SECTION_DETAILS):

Keyword Meaning

GROUP_SECTIONS Directs the OpenVMS I64 Linker to list all
processed groups (ELF COMDATs).

NOSECTION_DETAILS Directs the OpenVMS I64 Linker to
suppresses zero length contributions in the
Program Section Synopsis.

ALL For the OpenVMS I64 Linker, the ALL
keyword is equivalent to specifying both the
GROUP_SECTIONS and SECTION_DETAILS
keywords.

The first keyword, GROUP_SECTIONS, prints all of the groups that were used in
the map. Today the only compiler that takes advantage of groups is C++. Using
this keyword with other languages has no effect.

When /FULL=NOSECTION_DETAILS is specified the OpenVMS I64 Linker
suppresses zero length contributions in the Program Section Synopsis of the map.
When the qualifier /FULL is used, it defaults to /FULL=SECTION_DETAILS,
and a full linker map on VAX, Alpha, and I64 systems lists all the module
contributions in the Program Section Synopsis.

7.1.4 New Linker Options for OpenVMS I64
Some new linker options have been added to support linking on OpenVMS I64
systems. This section describes these features.

7.1.4.1 New Alignments for the PSECT_ATTRIBUTE Option
The PSECT_ATTRIBUTE option now accepts integers 5, 6, 7, and 8 for the
alignment attribute. The integers represent the byte alignment indicated as a
power of 2. (For example, 2 ** 6 represents a 64-byte alignment.) The keyword
HEXA (for hexadecimal word) was added for 2 ** 5 (that is, a 32-byte or 16-word
alignment).

7.1.5 New Ways to Use Existing Linker Qualifiers and Options
The following sections describe new ways to use existing linker qualifiers and
options on I64 systems. Topics include:

• Using mixed-case arguments in linker options (Section 7.1.5.1)

• Conventions for specifying image names (Section 7.1.5.2)

• Using the PSECT_ATTRIBUTE option to specify alignment (Section 7.1.5.3)

Linker Utility 7–17

Linker Utility
7.1 Linker Utility New Features

7.1.5.1 Mixed-Case Arguments in Linker Options on I64 Systems
On OpenVMS I64 systems, names issued by compilers may be mixed-case names.
If you need to operate on mixed-case names in the options file (for example you
have a library include statement and the module names are mixed-case) the
linker already has an option to process the names in mixed-case, rather than
using its default behavior (uppercasing all names). That option is the CASE_
SENSITIVE option:

CASE_SENSITIVE=YES.

When the CASE_SENSITIVE option is set to YES, all characters to the right of
the left-most equal sign (such as option arguments) have their case preserved. In
other words, these characters are taken as-is without modification. This includes
file names, module names, symbol names and keywords. To restore the linker’s
default behavior of upcasing the entire option line, specify the CASE_SENSITIVE
option with the NO keyword, as follows:

CASE_SENSITIVE=NO

Note that the NO keyword must appear in uppercase or it will not be recognized
by the linker.

For example, the following module contains mixed-case names that you want to
preserve by setting the linker to case-sensitive mode.

case=Yes
My_Lib/library/include=(Add_Func, Sub_Func)
symbol_vector=(Add_Func=PROCEDURE,PAGE_COUNT=DATA)
case=NO

When processed by the linker, the text appears as follows:

CASE=YES
MY_LIB/LIBRARY/INCLUDE=(Add_Func,Sub_Func)
SYMBOL_VECTOR=(Add_Func=PROCEDURE,PAGE_COUNT=DATA)
CASE=NO

The case of all names to the right of the first equal sign in each option remains
the same.

To maintain VAX and Alpha behavior, HP recommends that you switch to case
sensitivity only when needed.

7.1.5.2 Conventions for Specifying Image Names
The following conventions describe the various names that apply to an image:

• Images are given an image file specification (for example, FOO.EXE) that can
be changed with the DCL RENAME command.

• The image name is specified with the NAME= option and stored in the image
in a note of type NT_VMS_IMGNAM. This name can be different than the
image file specification name. However, if you do not use the NAME= option,
the name defaults to the image file specification name. The Analyze utility
displays this name as the "Image name". You cannot change this name with
the DCL RENAME command.

• An additional name for the image is associated with the Global Symbol Table
(GST) and stored in the image in a note of type NT_VMS_GSTNAM. The
linker sets this name to be the same as the image file specification name.
This name is used by the Librarian when you insert an image into an image

7–18 Linker Utility

Linker Utility
7.1 Linker Utility New Features

library. It is displayed by the Analyze utility as the "Global Symbol Table
Name". You cannot change this name with the DCL RENAME command.

On Alpha systems, the image name specified with NAME= is used to identify
self-references in the shareable image list. Self-references are calls from within
the image to itself, by means of an alias name in the symbol vector.

On I64 systems, there is no entry in the shareable image list for the current
image. Self-references are referred to with a special index value into the
shareable image list (-1 in the DT_VMS_FIXUP_NEEDED field) that results
in a a set of DT_NEEDED entries.

7.1.5.3 Using the PSECT_ATTRIBUTE Option to Specify Alignment
Do not specify a smaller section alignment with the PSECT_ATTRIBUTE than
the alignment that the compiler gave to the section.

If you specify a smaller alignment for a program section than any compiler-
assigned alignment from all contributions to this section, the linker now issues a
warning. For example:

$ link hi,sys$input/opt
psect_attr=$literal$,byte
%ILINK-W-CONFALGN, PSECT option alignment (1) less than compiler
assigned (16);
alignment ignored

section: $LITERAL$
module: HI
file: DISK$USER:[JOE]HI.OBJ;3

For the VAX and Alpha systems, the linker inappropriately aligns the program
section on the boundary that you specified ("byte", in the above code example),
and places all the contributions to that program section (from other modules you
might have linked with "hi", in the above example) on boundaries that were not
specified by the compiler. The linker would not have issued an error message.

The linker always aligns sections on a boundary that is greater than or equal to
what was specified by the compiler.

The PSECT_ATTRIBUTE option aligns the section on the specified boundary
when it is equal to or greater than that which the compiler specified. It does not
align each individual contribution to the section; rather, the total section. The
PSECT_ATTRIBUTE option follows the compiler’s alignment specification when
it aligns each individual contribution.

7.1.5.4 Special Linker Handling of Nonexistent Files
When the RMS_RELATED_CONTEXT linker option is on (the default is RMS_
RELATED_CONTEXT=YES) and a nonexistent file is specified in a list of files
for the LINK command, the linker’s call to LIB$FIND_FILE takes a long time
to complete and the linker may appear to hang. Depending on the number of
files being linked and the use of logical names in their specification, the linker
may take hours to finish because LIB$FIND_FILE locates every combination of
the missing file’s prefix before displaying a "file not found" message. Note that
you cannot terminate the linker process with Ctrl/Y after the linker has called
LIB$FIND_FILE.

To quicly find out what the missing file specification is, specify /OPTION in
the LINK command. When you press Return, the linker waits for you to enter
information into an options file. When you are finished, press Ctrl/Z. To avoid the
problems with LIB$FIND_FILE, include the following items in the options file:

Linker Utility 7–19

Linker Utility
7.1 Linker Utility New Features

• On the first line, specify this option:

RMS_RELATED_CONTEXT=NO

With the RMS_RELATED_CONTEXT option set to NO, any missing file listed
in this options file will generate an immediate "file not found" message.

• On subsequent lines, specify the files to be linked, using full file specifications
(in the form disk:[dir]filename.ext) for every file. Full file specifications are
required because when you specify RMS_RELATED_CONTEXT=NO, file
name ‘‘stickiness’’ is disabled.

For example, consider the following LINK command:

$ LINK DSK:[TEST]A.OBJ, B.OBJ

If you want to specify this command with RMS_RELATED_CONTEXT=NO, you
would specify /OPTION and then enter full file specifications for the files to be
linked, as follows:

$ LINK SYS$INPUT:/OPTION
RMS_RELATED_CONTEXT=NO
DSK:[TEST]A.OBJ, DSK:[TEST]B.OBJ Ctrl/Z

$

Example
The following example shows how the linker appears to hang when file DOES_
NOT_EXIST.OBJ is included in the list and the RMS_RELATED_CONTEXT
option is not specified (and therefore defaults to YES).

$ DEFINE DSKD$ WORK4:[TEST.LINKER.OBJ.]
$ DEFINE RESD$ ROOT$, ROOT2$, ROOT3$, ROOT4$, ROOT5$, DISK_READ$:[SYS.] !
$ DEFINE ROOT$ WORK4:[TEST.PUBLIC.TEST]
$ DEFINE ROOT2$ WORK4:[TEST.LINKER.]
$ DEFINE ROOT3$ WORK4:[TEST.UTIL32.]
$ DEFINE ROOT4$ WORK4:[TEST.PUBLIC.]
$ DEFINE ROOT5$ WORK4:[TEST.PUBLIC.TMP]
$ LINK/MAP/FULL/CROSS/EXE=ALPHA.EXE RESD$:[TMPOBJ] A.OBJ,-
_$ RESD$:[SRC]B.OBJ,C,DSKD$:[OBJ]D.OBJ,E,RESD$:[TMPSRC]F.OBJ,-
_$ RESD$:[TEST]G.OBJ,RESD$:[SRC.OBJ]H,RESD$:[COM]DOES_NOT_EXIST.OBJ

Ctrl/T NODE6::_FTA183: 15:49:46 LINK CPU=00:02:30.04 PF=5154 IO=254510 MEM=134 "
Ctrl/T NODE6::_FTA183: 15:49:46 LINK CPU=00:02:30.05 PF=5154 IO=254513 MEM=134
Ctrl/T NODE6::_FTA183: 15:50:02 LINK CPU=00:02:38.27 PF=5154 IO=268246 MEM=134
Ctrl/T NODE6::_FTA183: 15:50:02 LINK CPU=00:02:38.28 PF=5154 IO=268253 MEM=134
Ctrl/T NODE6::_FTA183: 15:50:14 LINK CPU=00:02:44.70 PF=5154 IO=278883 MEM=134

! This command defines logical names and equivalents.

" Each time you press Ctrl/T, the CPU and IO values increase, but the MEM
and PF values do not, indicating that LIB$FIND_FILE is being called.

As shown in the following example, using an options file to set RMS_RELATED_
CONTEXT to NO causes the link operation to finish immediately when it
encounters the missing file.

$ DEFINE DSKD$ WORK4:[TEST.LINKER.OBJ.]
$ DEFINE RESD$ ROOT$, ROOT2$, ROOT3$, ROOT4$, ROOT5$, DISK_READ$:[SYS.]
$ DEFINE ROOT$ WORK4:[TEST.PUBLIC.TEST.]
$ DEFINE ROOT2$ WORK4:[TEST.LINKER.]
$ DEFINE ROOT3$ WORK4:[TEST.UTIL32.]
$ DEFINE ROOT4$ WORK4:[TEST.PUBLIC.]
$ DEFINE ROOT5$ WORK4:[TEST.PUBLIC.TMP.]
$ LINK/MAP/FULL/ CROSS /EXE=ALPHA.EXE SYS$INPUT:/OPTION
RMS_RELATED_CONTEXT=NO
RESD$:[TMPOBJ]A.OBJ,RESD$:[SRC]B.OBJ,RESD$:[SRC]C,DSKD$:[OBJ]D.OBJ

7–20 Linker Utility

Linker Utility
7.1 Linker Utility New Features

DSKD$:[OBJ]E,RESD$:[TMPSRC]F.OBJ,RESD$:[TEST]G.OBJ
RESD$:[SRC.OBJ]H,RESD$:[COM]DOES_NOT_EXIST.OBJ Ctrl/Z

%LINK-F-OPENIN, error opening DISK_READ$:[SYS.][COM]DOES_NOT_EXIST.OBJ; as input
-RMS-E-FNF, file not found
$

7.1.6 New OpenVMS I64 Linker Map
The Linker map has been enhanced with new information for OpenVMS
I64 Linker. The Linker map comprises the following information, shown
in Figure 7–1, Figure 7–2, Figure 7–3, Figure 7–4, Figure 7–5, Figure 7–6,
Figure 7–7, and Figure 7–8.

• Object and image synopsis

• Cluster synopsis

• Image segment synopsis

• Program section synopsis

• Symbol cross reference

• Symbols by value

• Image synopsis

• Link run statistics

Callout descriptions describing new and changes portions of the Linker map are
provided after the example Linker map.

Linker Utility 7–21

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–1
O

bject
and

Im
age

S
ynopsis

and
C

luster
S

ynopsis
 28-OCT-2004 13:34 Linker I02-17

 +---------------------------+
 ! Object and Image Synopsis !
 +---------------------------+

Module/Image File Ident Attributes Bytes Creation Date Creator
------------ ---- ----- ---------------- ----- ------------- -------
GETJPI V1.0 Lkg Dnrm 360 28-OCT-2004 13:32 HP C V7.1-005
 SYS$SYSROOT:[SYSMGR]GETJPI.OBJ;1
DECC$SHR V8.2-00 Lkg 0 21-OCT-2004 11:23 Linker T02-17
 SYS$COMMON:[SYSLIB]DECC$SHR.EXE;1
SYS$PUBLIC_VECTORS X-3 Sel Lkg 0 21-OCT-2004 11:23 Linker T02-17
 SYS$COMMON:[SYSLIB]SYS$PUBLIC_VECTORS.EXE;1

 Key for Attributes
+--+
! Sel - Module was selectively searched !
! Lkg - Contains call linkage information !
! Dnrm - Denormal IEEE FP model !
+--+

 +------------------+
 ! Cluster Synopsis !
 +------------------+

Cluster Match Majorid Minorid
------- ----- ------- ----------
MYCLU
DEFAULT_CLUSTER
DECC$SHR LESS/EQUAL 1 1
SYS$PUBLIC_VECTORS EQUAL 9114 3906113603

1

2 3

4

5 6V
M

-1
1

7
3

A
-A

I

7–22
Linker

U
tility

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–2
Im

age
S

egm
ent

S
ynopsis

7

8

V
M

-1
1

7
4

A
-A

I

SYS$SYSROOT:[SYSMGR]GETJPI.EXE;1 28-OCT-2004 13:34 Linker I02-17

 +------------------------+
 ! Image Segment Synopsis !
 +------------------------+

Seg# Cluster Type Pglts Base Addr Disk VBN PFC Protection Attributes
---- ------- ---- ----- --------- -------- --- ---------- ----------
 0 MYCLU LOAD 1 00010000 2 0 READ WRITE
 1 LOAD 1 00020000 0 0 READ WRITE DEMAND ZERO
 2 LOAD 1 00030000 3 0 READ ONLY EXECUTABLE,SHARED
 3 LOAD 1 00040000 4 0 READ ONLY SHARED
 4 LOAD 1 00050000 5 0 READ ONLY [UNWIND]
 5 DEFAULT_CLUSTER LOAD 1 00060000 6 0 READ ONLY SHORT
 6 DYNAMIC 2 Q-00000000
 80000000 7 0 READ ONLY

 Key for special characters above
+----------------------+
! Q - Quadword !
+----------------------+

Linker
U

tility
7–23

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–3
P

rogram
S

ection
S

ynopsis

9

10

11

V
M

-1
1

7
5

A
-A

I

SYS$SYSROOT:[SYSMGR]GETJPI.EXE;1 28-OCT-2004 13:34 Linker I02-17
 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module/Image Base End Length Align Attributes
---------- ------------ ---- --- ------ ----- ----------

ITMLST 00010000 0001000F 00000010 (16.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC, MOD
 GETJPI 00010000 0001000F 00000010 (16.) OCTA 4 Initializing Contribution

FILLEN 00020000 00020003 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020000 00020003 00000004 (4.) OCTA 4

FILLM 00020010 00020013 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020010 00020013 00000004 (4.) OCTA 4

IOSB 00020020 00020027 00000008 (8.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020020 00020027 00000008 (8.) OCTA 4

STATUS 00020030 00020033 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020030 00020033 00000004 (4.) OCTA 4

7–24
Linker

U
tility

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–4
P

rogram
S

ection
S

ynopsis
(C

ontinued)

12

V
M

-1
1

7
6

A
-A

I

$CODE$ 00030000 0003015F 00000160 (352.) OCTA 4 CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
 GETJPI 00030000 000300FF 00000100 (256.) OCTA 4
 <Linker> 00030100 0003015F 00000060 (96.) OCTA 4

$LINK$ 00040000 00040000 00000000 (0.) OCTA 4 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC,NOMOD
 GETJPI 00040000 00040000 00000000 (0.) OCTA 4

$LITERAL$ 00040000 00040017 00000018 (24.) OCTA 4 CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00040000 00040017 00000018 (24.) OCTA 4

$READONLY$ 00040020 0004002F 00000010 (16.) OCTA 4 CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00040020 0004002F 00000010 (16.) OCTA 4

$LINKER UNWIND$ 00050000 00050017 00000018 (24.) QUAD 3 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00050000 00050017 00000018 (24.) QUAD 3

$LINKER UNWINFO$ 00050018 0005002F 00000018 (24.) QUAD 3 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00050018 0005002F 00000018 (24.) QUAD 3

$LINKER SYMBOL_VECTOR$ 00060000 00060007 00000008 (8.) OCTA 4 CON,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD,SHORT
 <Linker Option> 00060000 00060007 00000008 (8.) OCTA 4

$LINKER SDATA$ 00060008 000600AF 000000A8 (168.) OCTA 4 CON,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD,SHORT
 <Linker> 00060008 000600AF 000000A8 (168.) OCTA 4

Linker
U

tility
7–25

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–5
S

ym
bolC

ross
R

eference

13

V
M

-1
1

7
7

A
-A

I

SYS$SYSROOT:[SYSMGR]GETJPI.EXE;1 28-OCT-2004 13:34 Linker I02-17

 +------------------------+
 ! Symbol Cross Reference !
 +------------------------+

Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
DECC$TXPRINTF 00000496-X DECC$SHR GETJPI
ELF$TFRADR 00060050-R WK-GETJPI
FILLEN 00020000-R GETJPI GETJPI
FILLM 00020010-R GETJPI GETJPI
GETJPI (U) 00000000 <Linker Option>
INTERNAL_GETJPI 00060098-R GETJPI
IOSB 00020020-R GETJPI GETJPI
ITMLST 00010000-R GETJPI
STATUS 00020030-R GETJPI GETJPI
SYS$GETJPIW 0000009A-X SYS$PUBLIC_VECTORS GETJPI

7–26
Linker

U
tility

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–6
S

ym
bols

by
V

alue

14

V
M

-1
1

7
8

A
-A

I

SYS$SYSROOT:[SYSMGR]GETJPI.EXE;1 28-OCT-2004 13:34 Linker I02-17

 +------------------+
 ! Symbols By Value !
 +------------------+

Value Symbols...
----- ----------
00000000 GETJPI (U)
0000009A X-SYS$GETJPIW
00000496 X-DECC$TXPRINTF
00010000 R-ITMLST
00020000 R-FILLEN
00020010 R-FILLM
00020020 R-IOSB
00020030 R-STATUS
00060050 R-ELF$TFRADR
00060098 R-INTERNAL_GETJPI

 Key for special characters above
+----------------------+
! * - Undefined !
! (U) - Universal !
! R - Relocatable !
! X - External !
! C - Code Address !
! WK - Weak !
! UxWk - Unix-Weak !
+----------------------+

Linker
U

tility
7–27

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–7
Im

age
S

ynopsis

SYS$SYSROOT:[SYSMGR]GETJPI.EXE;1 28-OCT-2004 13:34 Linker I02-17

 +----------------+
 ! Image Synopsis !
 +----------------+

Virtual memory allocated: 00010000 0006FFFF 00060000 (393216. bytes, 768. pages)
64-Bit Virtual memory allocated: 00000000 00000000 00000000
 80000000 80010000 00010000 (65536. bytes, 128. pages)
Stack size: 0. pages
Image header virtual block limits: 1. 1. (1. block)
Image binary virtual block limits: 2. 8. (7. blocks)
Image name and identification: GETJPI V1.0
Number of files: 5.
Number of modules: 3.
Number of program sections: 9.
Number of global symbols: 3338.
Number of cross references: 17.
Number of image segments: 7.
Transfer address from module: GETJPI
User transfer FD address: 00000000 00060050
User transfer code address: 00000000 00030000
Initial FP mode: 00000000 09800000 (IEEE DENORM_RESULTS)
Number of code references to shareable images: 3332.
Image type: SHAREABLE. Global Section Match=EQUAL, Ident, Major=9120, Minor=2068313277
Reduced Floating Point model (RFP): Image does not use RFP model
Map format: FULL WITH CROSS REFERENCE in file SYS$SYSROOT:[SYSMGR]GETJPI.MAP;1
Estimated map length: 441. blocks

V
M

-1
1

7
9

A
-A

I

7–28
Linker

U
tility

Linker
U

tility
7.1

Linker
U

tility
N

ew
F

eatures

F
igure

7–8
Link

R
un

S
tatistics

15

V
M

-1
1

8
0

A
-A

I

 +---------------------+
 ! Link Run Statistics !
 +---------------------+

Performance Indicators Page Faults CPU Time Elapsed Time
---------------------- ----------- -------- ------------
 Command processing: 55 00:00:00.00 00:00:00.00
 Pass 1: 173 00:00:00.06 00:00:00.05
 Allocation/Relocation: 5 00:00:00.02 00:00:00.02
 Pass 2: 32 00:00:00.01 00:00:00.00
 Symbol table output: 4 00:00:00.00 00:00:00.00
 Map data after object module synopsis: 5 00:00:00.00 00:00:00.07
Total run values: 274 00:00:00.09 00:00:00.17

Quota usage ByteCount FileCount PgFlCount
------------ --------- --------- ---------
 Available: 127808 100 512000
 Command processing: 384 2 7888
 Pass 1: 384 2 10240
 Allocation/Relocation: 576 3 10240
 Pass 2: 576 3 18624
 Symbol table output: 384 2 18624
 Map data after object module synopsis: 384 2 18624

Using a working set limited to 16384 pages and 11029 pages of data storage (excluding image)

Number of modules extracted explicitly = 0
 with 0 extracted to resolve undefined symbols

1 library searches were for symbols not in the library searched

A total of 8 global symbol table entries was written

LINK/DEB/MAP/FULL/CROSS/SHARE GETJPI.OPT/OPT
<SYS$SYSROOT:[SYSMGR]GETJPI.OPT;2>
cluster=myclu,,,getjpi.obj
symbol_vector=(getjpi/internal_getjpi=procedure

Linker
U

tility
7–29

Linker Utility
7.1 Linker Utility New Features

The following list correspond to the numbered items in the preceding figures:

! Object and Image Synopsis. The Alpha section titled Object Module Synopsis
has been renamed on I64 to Object and Image Synopsis.

" Module/Image. The Alpha column Module Name has been renamed on I64 to
Module/Image.

Attributes. New information has been added in the four columns titled
Attributes. The first of the four columns indicates whether the search of
the module is selective. If selective, "Sel" appears. If it is not selective, this
column is blank.

The second column indicates whether the module has call linkage information.
If the module has linkage, "Lkg" appears. If the module does not have
linkage, this column is blank.

The third column indicates whether the module is compiled with the
Reduced Floating Point model. If it is, "RFP" appears. If the module was
not compiled with the Reduced Floating Point model, this column is blank.
This designation is suppressed for shareable images.

The fourth column indicates the whole program mode. Several abbreviations
can appear in this column that are listed in the Key for Attributes section.
The following example lists all of the possible abbreviations in the Keys for
Attributes section. The Creation Date and Creator columns are truncated
from this example; see the following map example for the the entire Object
and Image Synopsis.
Module/Image File Ident Attributes Bytes
------------ ---- ----- ---------------- -----
NONE V1.0 Lkg 568

DISK1:[JOE]NONE.OBJ;1
DNORM_CASE Lkg RFP Dnrm 504

DISK1:[JOE]DENORM_W.OBJ;1
FAST _CASE Lkg RFP Fast 504

DISK1:[JOE]FAST_W.OBJ;1
NEPCT_CASE Lkg RFP Inex 504

DISK1:[JOE]INEXACT_W.OBJ;1
SPCL _CASE Lkg RFP Spcl 504

DISK1:[JOE]SPECIAL_W.OBJ;1
UNDER_CASE Lkg RFP Undr 504

DISK1:[JOE]UNDERFLOW_W.OBJ;1
DG_FL_CASE Lkg RFP VXfl 504

DISK1:[JOE]VAXFLOAT_W.OBJ;1
DECC$SHR V8.2-00 Lkg 0

RESD$:[SYSLIB]DECC$SHR.EXE;1
SYS$PUBLIC_VECTORS X-2 Sel Lkg 0

RESD$:[SYSLIB]SYS$PUBLIC_VECTORS.EXE;1

Key for Attributes
+--+
! Sel - Module was selectively searched !
! Lkg - Contains call linkage information !
! RFP - Conforms to the reduced FP model !
! VXfl - VAX Float FP model !
! Dnrm - Denormal IEEE FP model !
! Fast - Fast IEEE FP model !
! Inex - Inexact IEEE FP model !
! Undr - Underflow-to-zero IEEE FP model !
! Spcl - Special FP model !
+--+

7–30 Linker Utility

Linker Utility
7.1 Linker Utility New Features

$ Cluster Synopsis. The Alpha section titled Image Section Synopsis has been
divided into two sections for I64: Cluster Synopsis and Image Segment
Synopsis. The Cluster Synopsis section no longer contains image sections,
which on I64 are referred to as segments. Further, image sections are no
longer printed for sharable images, which was formerly done on VAX map
files whenever there was a possibility of having based shareable images.
(Based shareable images are not allowed on Alpha or I64 systems.)

% Cluster. The Cluster column shows clusters that were created for and used by
the Linker, and the order in which they were processed.

& Match, Majorid, and Minorid. The Match, Majorid, and Minorid columns
show version criteria, if any.

’ Image Segment Synopsis. The Image Segment Synopsis section shows each
image segment as it was created. It contains the remaining columns of
the Image Section Synopsis on OpenVMS Alpha. The first column, Seg #,
contains the image segment’s number, which is used in the relocations that
are applied to it. (See an analysis of an image for a display of the segment
number in relocations.) The Alpha section Protection and Paging has been
divided into two columns Protection and Attributes on I64. The column
Global Section Name was eliminated.

(If the module was compiled /TIE and the image is linked /NONATIVE only
and if the image contains non-standard signatures, a separate segment will
appear immediately after the short data segment (indicated by SHORT) that
contains them.

) The section attributes PIC, NOPIC are not valid attributes on I64 and were
removed.

+> The Linker contributes storage for common or relaxed refdef symbols. It is
marked with <Linker> under the Module/Image header. The section name is
always named after the symbol. (This module was compiled with the default
switch /EXTERN=RELAXED, and the variables ITMLST, FILLEN, FILLIM
and IOSB are relaxed refdef symbols).

+? The Linker indicates which module made the initialization (if there was
one) to sections which have the attributes OVR, REL and GBL with the
designation "Initializing Contribution". If you get a multiple initializations
error, the Linker will have two or more sections marked with the designation
"Initializing Contribution", in order to help you debug an instance that has
many contributors.

+@ The Linker makes a contribution to the code segment containing trampolines
(instructions with larger branches) or code to branch to another segment
(either inside or outside the image). It is marked with <Linker> under the
Module/Image header.

+A The designation of an external symbol has changed from Alpha maps. The
prefix or suffix used on Alpha was RX, meaning relocatable and external.
However, the Linker does not know whether an external symbol is relocatable
or not. As a result, on I64 systems the prefix or suffix has been changed to X
(external).

Linker Utility 7–31

Linker Utility
7.1 Linker Utility New Features

+B Keys for Special Characters. The keys for special characters have changed as
follows:

• On I64, the special character C appears for code address. When a function
does not have a function descriptor assigned by the Linker, its value is its
code address.

• On OpenVMS Alpha, a universal symbol appeared once with its internal
value. The map never displayed an external, universal value (its index
into the symbol vector on I64). Universal symbols on I64 now appear once
with a suffix of (U) defined by <Linker Option> to indicate the external
value, and again, possibly with the prefix or suffix R, to indicate their
internal value. If you had a symbol vector with an alias name the alias
name appears with the universal value, and the internal name appears
with the internal value. The prefixes and suffixes A and I (for Alias and
Internal) on OpenVMS Alpha have been removed.

For example, symbol_vector=(getjpi/internal_getjpi=procedure) yields:

00000000 GETJPI (U)
00050098 R-INTERNAL_GETJPI

• UNIX weak symbols, designated with UxWk, are a new addition to
OpenVMS. They are similar to OpenVMS weak symbols; however, more
than one symbol with a UNIX weak definition can be processed when
linking multiple modules without producing a multiple definitions error.
UNIX weak symbols are currently produced by the C++ compiler.

+C Quota Usage. A new section titled Quota Usage was added to the Link Run
Statistics section to keep track of the quotas that are being used by the I64
Linker. If quota issues occur, the Linker is able to work around them. But
the Linker outputs a special message to the Quota Usage section indicating,
as best it can, what quota should be increased to improve performance. For
example:

Performance of this link operation could be improved by increasing quotas
Quota related to status return: %SYSTEM-SECTBLFUL, process or global
section table is full

2688 extra file I/O operations performed due to current process quota(s)
36 performed on object files; 2652 performed on library files

7–32 Linker Utility

Part II
OpenVMS Documentation

8
OpenVMS Documentation Overview

Table 8–1 describes any reorganization of the OpenVMS documentation set for
OpenVMS Version 8.2. For this release, two new manuals are added to the
OpenVMS Documentation Set, and three manuals have been archived. Also, the
following manuals are again in hardcopy format:

• HP OpenVMS Management Station Overview and Release Notes

• COM, Registry, and Events for HP OpenVMS Developer’s Guide

Table 8–1 Documentation Set Changes for OpenVMS Version 8.2

New Manuals

Porting Applications from
HP OpenVMS Alpha to HP
OpenVMS Industry Standard 64
for Integrity Servers

This new manual for application programmers who are planning to
migrate OpenVMS Alpha applications to OpenVMS I64 applications.

HP MACRO Compiler Porting
and User’s Guide

This is a revised manual making its first appearance in the OpenVMS
Documentation Set.

Archived Manuals

VAX MACRO and Instruction Set
Reference Manual

This manual describes the features of the VAX MACRO instruction set
and assembler. Beginning Version 8.2, this manual is archived. Look
for the link to archived manuals on the OpenVMS documentation Web
site:

http://www.hp.com/go/openvms/doc/

OpenVMS VAX RTL
Mathematics (MTH$) Manual

This manual documents the mathematics routine contained in the
MTH$ facility of the OpenVMS VAX Run-Time Library. Beginning
Version 8.2, this manual is archived. Look for the link to archived
manuals on the OpenVMS documentation Web site:

http://www.hp.com/go/openvms/doc/

OpenVMS VAX System Dump
Analyzer Utility Manual

This manual explains how to use the System Dump Analyzer (SDA) to
investigate system failures and examine a running system. Beginning
Version 8.2, this manual is archived. Look for the link to archived
manuals on the OpenVMS documentation Web site:

http://www.hp.com/go/openvms/doc/

OpenVMS Documentation Overview 8–1

9
OpenVMS Printed and Online Documentation

OpenVMS documentation is provided, in the following ways:

• Printed documentation

If you need paper documents, you can purchase most OpenVMS manuals
in the form of printed documentation sets. Individual OpenVMS hardcopy
documents cannot be purchased separately but are available in kits. One
exception is the Porting Applications from HP OpenVMS Alpha to HP
OpenVMS Industry Standard 64 for Integrity Servers, which you can order in
hardcopy.

• Online documentation on CD

All OpenVMS manuals are available in online formats on CDs that also
include the documentation for many associated products. You automatically
receive the documentation CDs in your OpenVMS media kit.

• Online documentation on the OpenVMS documentation Web site

You can preview or read any OpenVMS document, including archived
manuals, on the OpenVMS Web site.

• Online help

You can quickly display online help for OpenVMS commands, utilities, and
system routines when you need task-related information.

The following sections describe each format in which OpenVMS documentation is
provided and specifies the titles that are available in that format.

9.1 Printed Documentation
Some printed documentation comes with your OpenVMS Media Kit. All other
printed manuals are orderable in kits. This section describes the OpenVMS
printed documentation offerings, which are categorized as follows:

• Media kit

• Documentation sets:

– Base

– Full

– Operating Environment Extensions

• System-integrated products

• Archived manuals

OpenVMS Printed and Online Documentation 9–1

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

9.1.1 OpenVMS Media Kit Documentation
The OpenVMS Media Kit, for both OpenVMS Alpha and OpenVMS I64 systems,
contains the documents you need to get started with the latest version of the
OpenVMS operating system. Table 9–1 lists the books included in the OpenVMS
media kit. The books you receive are determined by whether you are a new or a
service customer. New customers receive all books; service customers receive only
new books and books that have been updated since the last release.

Note

The HP OpenVMS License Management Utility Manual, Guide to HP
OpenVMS Version 8.2 Media, and HP OpenVMS Version 8.2 Upgrade and
Installation Manual are provided only in the OpenVMS Media kit and,
therefore, are not part of the OpenVMS Full Documentation set (described
in Section 9.1.2).

Table 9–1 OpenVMS Media Kit Manuals

Manual Order Number

HP OpenVMS License Management Utility Manual AA-PVXUG-TK

Guide to HP OpenVMS Version 8.2 Media BA322-90001

HP OpenVMS Version 8.2 New Features and Documentation Overview BA322-90003

HP OpenVMS Version 8.2 Upgrade and Installation Manual BA322-90002

HP OpenVMS Version 8.2 Release Notes BA322-90004

9.1.2 OpenVMS Documentation Sets
OpenVMS documentation is available in the following documentation sets:

Documentation
Set Description Alpha Order Number

I64 Order
Number

Full Set Intended for users who
need extensive explanatory
information for all major
OpenVMS resources.
Contains all the OpenVMS
documentation in one
offering. Includes the Base
Documentation set.

QA-001AA-GZ.8.2 BA554MN

Base Set Subset of the Full
Documentation set. Intended
for general users and system
managers of small standalone
systems. Includes the most
commonly used OpenVMS
manuals.

QA-09SAA-GZ.8.2 BA555MN

There is one common documentation set for both OpenVMS Alpha and OpenVMS
I64 systems. OpenVMS Alpha documentation set and the OpenVMS I64
documentation set contain the identical books with one exception. The OpenVMS
Alpha documentation set contains the COM, Registry, and Events for HP
OpenVMS Developer’s Guide, which is an Alpha-only document. Table 9–2

9–2 OpenVMS Printed and Online Documentation

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

lists the manuals in the OpenVMS Base and Full Documentation sets. For a
description of each manual, see Section 10.2.

Table 9–2 OpenVMS Full Documentation Set (QA-001AA-GZ.8.2/BA554MN)

Manual Order Number

OpenVMS Base Documentation Set
QA-09SAA-
GZ.8.2/BA555MN

HP OpenVMS DCL Dictionary: A–M1 AA-PV5KK-TK

HP OpenVMS DCL Dictionary: N–Z1 AA-PV5LK-TK

HP OpenVMS Guide to System Security AA-Q2HLG-TE

HP OpenVMS System Management Utilities Reference Manual: A–L1 AA-PV5PJ-TK

HP OpenVMS System Management Utilities Reference Manual: M–Z1 AA-PV5QJ-TK

HP OpenVMS System Manager’s Manual, Volume 1: Essentials1 AA-PV5MJ-TK

HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems1

AA-PV5NJ-TK

OpenVMS User’s Manual AA-PV5JG-TK

HP OpenVMS Version 8.2 New Features and Documentation Overview2 BA322-90003

HP OpenVMS Version 8.2 Release Notes2 BA322-90004

Additional Books in the Full Documentation Set QA-001AA-GZ.8.2

HP OpenVMS Availability Manager User’s Guide1 AA-RNSJD-TE

COM, Registry, and Events for HP OpenVMS Developer’s Guide1,3 AA-RSCWC-TE

HP C Run-Time Library Reference Manual for OpenVMS Systems1 AA-RSMUC-TE

Compaq C Run-Time Library Utilities Reference Manual AA-R238C-TE

Compaq Portable Mathematics Library AA-PV6VE-TE

DECamds User’s Guide AA-Q3JSE-TE

DEC Text Processing Utility Reference Manual AA-PWCCD-TE

Extensible Versatile Editor Reference Manual AA-PWCDD-TE

Guidelines for OpenVMS Cluster Configurations1 AA-Q28LH-TK

Guide to Creating OpenVMS Modular Procedures AA-PV6AD-TK

Guide to OpenVMS File Applications AA-PV6PE-TK

Guide to the POSIX Threads Library AA-QSBPD-TE

Guide to the DEC Text Processing Utility AA-PWCBD-TE

HP Open Source Security for OpenVMS, Volume 1: Common Data Security
Architecture

AA-RSCUB-TE

HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS1 AA-RSCVC-TE

HP Open Source Security for OpenVMS, Volume 3: Kerberos1 AA-RUEBB-TE

HP OpenVMS Alpha Partitioning and Galaxy Guide AA-REZQD-TE

HP OpenVMS Guide to Upgrading Privileged-Code Applications1 AA-QSBGE-TE

1Revised for Version 8.2.
2New for Version 8.2.
3Alpha only - Provided only in QA-001AA-GZ.8.2

(continued on next page)

OpenVMS Printed and Online Documentation 9–3

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

Table 9–2 (Cont.) OpenVMS Full Documentation Set (QA-001AA-GZ.8.2/BA554MN)

Manual Order Number

Additional Books in the Full Documentation Set QA-001AA-GZ.8.2

HP OpenVMS System Analysis Tools Manual1 AA-REZTE-TE

HP OpenVMS Calling Standard1 AA-QSBBE-TE

HP OpenVMS Cluster Systems AA-PV5WF-TK

HP OpenVMS Command Definition, Librarian, and Message Utilities Manual1 AA-QSBDE-TE

HP OpenVMS Debugger Manual1 AA-QSBJE-TE

HP OpenVMS Delta/XDelta Debugger Manual1 AA-PWCADE-TE

HP OpenVMS I/O User’s Reference Manual1 AA-PV6SG-TK

HP OpenVMS Linker Utility Manual AA-PV6CDE-TK

HP OpenVMS MACRO Compiler Porting and User’s Guide1 AA-PV64DE-TE

HP OpenVMS Management Station Overview and Release Notes1 AA-QJGCG-TE

OpenVMS Performance Management AA-R237C-TE

Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry
Standard 64 for Integrity Servers2

BA442-90001

HP OpenVMS Programming Concepts Manual, Volume I1 AA-RNSHD-TK

HP OpenVMS Programming Concepts Manual, Volume II1 AA-PV67H-TK

OpenVMS Record Management Services Reference Manual AA-PV6RE-TK

OpenVMS Record Management Utilities Reference Manual AA-PV6QD-TK

HP OpenVMS RTL General Purpose (OTS$) Manual1 AA-PV6HE-TK

HP OpenVMS RTL Library (LIB$) Manual1 AA-QSBHE-TE

OpenVMS RTL Screen Management (SMG$) Manual AA-PV6LD-TK

OpenVMS RTL String Manipulation (STR$) Manual AA-PV6MD-TK

OpenVMS System Messages: Companion Guide for Help Message Users AA-PV5TD-TK

HP OpenVMS System Services Reference Manual: A–GETUAI1 AA-QSBMG-TE

HP OpenVMS System Services Reference Manual: GETUTC–Z1 AA-QSBNG-TE

OpenVMS Utility Routines Manual AA-PV6EF-TK

OpenVMS VAX RTL Mathematics (MTH$) Manual AA-PVXJD-TE

OpenVMS VAX System Dump Analyzer Utility Manual AA-PV6TD-TE

POLYCENTER Software Installation Utility Developer’s Guide1 AA-Q28MF-TK

VAX MACRO and Instruction Set Reference Manual AA-PS6GD-TE

HP Volume Shadowing for OpenVMS AA-PVXMK-TE

1Revised for Version 8.2.
2New for Version 8.2.

9.1.3 Operating Environments Extensions Documentation Set (I64 Only)
The Operating Environments Extensions Documentation Set includes manuals
that support the products that are included in the OEs. See Section 10.5 for a list
of these documents.

9–4 OpenVMS Printed and Online Documentation

OpenVMS Printed and Online Documentation
9.1 Printed Documentation

9.1.4 Documentation for System Integrated Products
System Integrated Products (SIPs) are included in the OpenVMS software,
but you must purchase separate licenses to enable them. Table 9–3 shows the
documentation associated with System Integrated Products.

Table 9–3 System Integrated Products Documentation

System Integrated Product Related Documentation

HP Galaxy Software
Architecture on OpenVMS Alpha

The documentation is included in the OpenVMS Full Documentation
Set.

OpenVMS Clusters The OpenVMS Cluster documentation is included in the OpenVMS Full
Documentation Set.

RMS Journaling for OpenVMS RMS Journaling for OpenVMS manual is provided in
HTML format on the OpenVMS Documentation Web site:
http://www.hp.com/go/openvms/doc

Volume Shadowing for OpenVMS The documentation is included in the OpenVMS Full Documentation
Set.

9.1.5 Archived OpenVMS Documentation
OpenVMS continuously updates, revises, and enhances the OpenVMS operating
system documentation. From time to time, manuals are archived. You can access
the archived manuals online from the following Web site:

http://www.hp.com/go/openvms/doc

For a list of the archived OpenVMS manuals, see Section 10.6.

9.2 Authoring Tool for OpenVMS Documentation
OpenVMS Documentation team is continuing to introduce books that have been
authored and published using a tool based on the Standard Generalized Markup
Language (SGML). SGML is an industry standard and will provide many benefits
to both the customer and OpenVMS documentation.

Readers will notice a difference in appearance between books produced from
SGML and others in the documentation set. This is true for HTML, PDF, and
printed formats and is a natural result of the new authoring environment.

The following Version 8.2 books have been produced with this new tool:

• HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS

• HP Open Source Security for OpenVMS, Volume 3: Kerberos

• HP OpenVMS Version 8.2 Upgrade and Installation Manual

• Guide to HP OpenVMS Version 8.2 Media

• HP Open Source Security for OpenVMS, Volume 3: Kerberos

• HP OpenVMS I/O User’s Reference Manual

• HP OpenVMS System Manager’s Manual, Volume 1: Essentials

• HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

OpenVMS Printed and Online Documentation 9–5

OpenVMS Printed and Online Documentation
9.3 Online Documentation on CD

9.3 Online Documentation on CD
Online documentation for the OpenVMS operating system and many associated
products is provided on two CDs. One is an ISO 9660 Level 2 CD that is readable
on Windows® and Macintosh® systems. The other is a Files-11 CD that is
readable on Windows and OpenVMS systems. The contents of the CDs are the
same except for the following:

• The ISO 9660 Level 2 CD contains Adobe® Acrobat® Reader Version 5.0.5.

• The Files-11 CD contains the HP Secure Web Browser for OpenVMS Alpha
(based on Mozilla) and a command procedure to launch the browser.

9.3.1 Online Formats
The documentation CDs contain documentation in the following formats:

Documentation Available Formats

Current OpenVMS manuals HTML, PDF

HP OpenVMS Version 8.2 Upgrade and Installation
Manual

HTML, PDF

HP OpenVMS Version 8.2 Release Notes HTML, PDF

HP OpenVMS Version 8.2 New Features and
Documentation Overview

HTML, PDF

Layered product documents HTML, PDF

Bookreader files are no longer available on the documentation CDs.

9.3.2 PDF Reader
The Adobe Acrobat Reader is provided for viewing PDF files. This self-extracting
file can be installed on a computer running Windows. It is located on the ISO
9660 Level 2 CD.

For information about how to access documents on the documentation CDs
and about the PDF reader, refer to the HP OpenVMS Version 8.2 Upgrade and
Installation Manual.

9.4 Online Documentation on the OpenVMS Web Site
You can access OpenVMS manuals in various online formats from the following
OpenVMS Web site:

http://www.hp.com/go/openvms/doc

This site contains links to current versions of manuals in the OpenVMS Full
Documentation Set as well as to manuals for selected layered products.

9.5 Online Help
The OpenVMS operating system provides online help for the commands, utilities,
and system routines documented in the Full Documentation set.

You can use the Help Message facility to quickly access online descriptions
of system messages. In addition, you can add your own source files, such as
messages documentation that you have written to the Help Message database.

9–6 OpenVMS Printed and Online Documentation

OpenVMS Printed and Online Documentation
9.5 Online Help

The OpenVMS System Messages: Companion Guide for Help Message Users
manual explains how to use the Help Message facility. You can also access DCL
Help for Help Message by entering:

$ HELP HELP/MESSAGE

Reference information for OpenVMS utility routines is also included in online
help.

OpenVMS Printed and Online Documentation 9–7

10
Descriptions of OpenVMS Manuals

This chapter provides summary descriptions for the following OpenVMS
documentation:

• Manuals in the OpenVMS Media Kit (Section 10.1)

• Manuals in the OpenVMS Base and Full Documentation sets (Section 10.2
and Section 10.3)

• RMS Journaling manual (Section 10.4)

• Manuals in the OpenVMS I64 OE Extensions Kit

• Archived manuals (Section 10.6)

10.1 Manuals in the OpenVMS Media Kit
Guide to HP OpenVMS Version 8.2 Media
Provides information about the OpenVMS Alpha operating system and
documentation CDs. Lists the contents of the OpenVMS Alpha and the OpenVMS
I64 Version 8.2 media kits, includes pointers to installation information, and gives
instructions about how to access manuals on the documentation CD.

HP OpenVMS License Management Utility Manual
Describes the License Management Facility (LMF), the OpenVMS license
management tool. LMF includes the License Management Utility (LICENSE)
and VMSLICENSE.COM, the command procedure you use to register, manage,
and track software licenses.

HP OpenVMS Version 8.2 Upgrade and Installation Manual
Provides step-by-step instructions for installing the OpenVMS Alpha and
OpenVMS I64 operating systems on their respective platforms. Includes
information about booting, shutdown, backup, and licensing procedures.

HP OpenVMS Version 8.2 New Features and Documentation Overview
Describes new and improved components for the I64 and Alpha operating
systems for the Version 8.2 release. Includes information about OpenVMS
documentation changes for Version 8.2 as well as the printed and online
OpenVMS documentation offerings.

HP OpenVMS Version 8.2 Release Notes
Describes changes to the software; installation, upgrade, and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections.

Descriptions of OpenVMS Manuals 10–1

Descriptions of OpenVMS Manuals
10.2 Manuals in the OpenVMS Base Documentation Set

10.2 Manuals in the OpenVMS Base Documentation Set
HP OpenVMS DCL Dictionary
Describes the DIGITAL Command Language (DCL) and provides an alphabetical
listing of detailed reference information and examples for all DCL commands and
lexical functions. This manual is in two volumes.

HP OpenVMS Guide to System Security
Describes the security features available in the OpenVMS Alpha and VAX
operating systems. Explains the purpose and proper application of each feature
in the context of specific security needs.

HP OpenVMS System Management Utilities Reference Manual
Presents reference information about the utilities you can use to perform system
management tasks on your system as well as the tools to control and monitor
system access and resources. Includes a description of the AUTOGEN command
procedure. This manual is in two volumes.

HP OpenVMS System Manager’s Manual, Volume 1: Essentials
Provides instructions for setting up and maintaining routine operations such
as starting up the system, installing software, and setting up print and batch
queues. Also explains routine disk and magnetic tape operations.

HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems
Describes how to configure and control the network, how to monitor the system,
and how to manage system parameters. Also includes information about
OpenVMS Cluster systems, network environments, and DECdtm functionality.

OpenVMS User’s Manual
Provides an overview of the operating system and presents basic concepts, task
information, and reference information that allow you to perform daily computing
tasks. Describes how to work with files and directories. Also includes these
additional topics:

• Sending messages with the Mail utility and the Phone utility

• Using the Sort/Merge utility

• Using logical names and symbols

• Writing command procedures

• Editing files with the EVE and EDT text editors

HP OpenVMS Version 8.2 New Features and Documentation Overview
Describes new and improved components for the Alpha and VAX operating
systems for the Version 8.2 release. Includes information about OpenVMS
documentation changes for Version 8.2 as well as the printed and online
OpenVMS documentation offerings.

HP OpenVMS Version 8.2 Release Notes
Describes changes to the software; installation, upgrade, and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections.

10–2 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

10.3 Additional Manuals in the OpenVMS Full Documentation Set
HP OpenVMS Availability Manager User’s Guide
Describes how to use the HO Availability Manager system management tool, from
either an OpenVMS Alpha or a Windows node, to monitor one or more OpenVMS
nodes on an extended local area network (LAN) or to target a specific node or
process for detailed analysis.

COM, Registry, and Events for HP OpenVMS Developer’s Guide
For programmers developing applications that move easily between the OpenVMS
and Windows NT environments. Read this manual if you are encapsulating
existing OpenVMS applications or data, or creating new COM appplications for
OpenVMS systems. It also provides information for those who want to use the
OpenVMS Registry to store information about their OpenVMS systems alone,
or who want to use the OpenVMS Registry as a shared repository for both
OpenVMS and Windows NT registry information. This manual was formerly
available online as the OpenVMS Connectivity Developer Guide.

HP C Run-Time Library Reference Manual for OpenVMS Systems
Provides reference information on the functions and macros found in the
HP C RTL that perform I/O operations, character and string manipulation,
mathematical operations, error detection, subprocess creation, system access, and
screen management. Includes portability concerns between operating systems,
and describes the HP C for OpenVMS socket routines used for writing Internet
application programs for the TCP/IP protocol.

Compaq C Run-Time Library Utilities Reference Manual
Provides detailed usage and reference information about the Run-Time Library
utilities for managing localization and time zone data in international software
applications.

Compaq Portable Mathematics Library
Documents the mathematics routines in the Compaq Portable Mathematics
Library (DPML), supplied only with OpenVMS Alpha systems. VAX programmers
should refer to the OpenVMS VAX RTL Mathematics (MTH$) Manual.

DECamds User’s Guide
Provides information for installing and using the DECamds software. DECamds
is a system management tool that lets you monitor, diagnose, and track events in
OpenVMS system and OpenVMS Cluster environments.

DEC Text Processing Utility Reference Manual
Describes the DEC Text Processing Utility (DECTPU) and provides reference
information about the EDT Keypad Emulator interfaces to DECTPU.

Extensible Versatile Editor Reference Manual
Contains command reference information about the EVE text editor. Also
provides a cross-reference between EDT and EVE commands.

Guidelines for OpenVMS Cluster Configurations
This manual provides information to help you choose systems, interconnects,
storage devices, and software. It can help you configure these components
to achieve high availability, scalability, performance, and ease of system
management. Detailed directions using SCSI and Fibre Channel in an OpenVMS
Cluster system are also included in this manual.

Descriptions of OpenVMS Manuals 10–3

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

Guide to Creating OpenVMS Modular Procedures
Describes how to perform a complex programming task by dividing it into
modules and coding each module as a separate procedure.

Guide to OpenVMS File Applications
Contains guidelines for designing, creating, and maintaining efficient data files
by using Record Management Services (RMS). This manual is intended for
application programmers and designers responsible for programs that use RMS
files, especially if performance is an important consideration.

Guide to the POSIX Threads Library
Describes the POSIX Threads Library (formerly named DECthreads) package,
HP’s multithreading run-time libraries. Use the routines in this package to create
and control multiple threads of execution within the address space provided by
a single process. Offering both usage tips and reference synopses, this document
describes three interfaces: routines that conform to the IEEE POSIX 1003.1c
standard (called pthread), routines that provide thread-related services in
nonthreaded applications (called thread-independent services or tis), and a set of
HP proprietary routines (called cma) that provide a stable, upwardly compatible
interface.

Guide to the DEC Text Processing Utility
Provides an introduction to developing DECTPU programs.

HP Open Source Security for OpenVMS, Volume 1: Common Data Security
Architecture
For application developers who want to use the Common Data Security
Architecture (CDSA) to add security to their programs. Describes CDSA, gives
information about installation and initialization, and provides example programs.
Contains the CDSA application programming interface modules.

HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS
For application developers who want to protect communication links to OpenVMS
applications with HP Secure Sockets Layer (HP SSL) for OpenVMS. Contains
installation instructions, release notes, and provides example programs. Includes
programming information and a reference section for the OpenSSL application
programming interface modules.

HP OpenVMS Alpha Partitioning and Galaxy Guide
Provides complete details about how to use all of the OpenVMS Galaxy features
and capabilities available in OpenVMS Alpha Version 7.3–2. Includes procedures
for creating, managing, and using OpenVMS Galaxy computing environments on
AlphaServer 8400, 8200, and 4100 systems.

HP OpenVMS Guide to Upgrading Privileged-Code Applications
Explains the OpenVMS Alpha Version 7.0 changes that might impact Alpha
privileged-code applications and device drivers as a result of the OpenVMS Alpha
64-bit virtual addressing and kernel threads support provided in OpenVMS Alpha
Version 7.0.

Privileged-code applications from versions prior to OpenVMS Alpha Version 7.0
might require the source-code changes described in this guide.

10–4 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

HP OpenVMS System Analysis Tools Manual
Describes the following system analysis tools in detail, while also providing a
summary of the dump off system disk (DOSD) capability and the DELTA/XDELTA
debugger:

• System Dump Analyzer (SDA)

• System Code Debugger (SCD)

• System Dump Debugger (SDD)

• Watchpoint utility

Intended primarily for the system programmer who must investigate the causes
of system failures and debug kernel mode code, such as a device driver.

HP OpenVMS Calling Standard
Documents the calling standard for the OpenVMS I64, Alpha, and VAX operating
systems.

HP OpenVMS Cluster Systems
Describes procedures and guidelines for configuring and managing OpenVMS
Cluster systems. Also describes how to provide high availability, building-block
growth, and unified system management across clustered systems.

HP OpenVMS Command Definition, Librarian, and Message Utilities Manual
Contains descriptive and reference information about the following utilities:

• Command Definition utility

• Librarian utility

• Message utility

HP OpenVMS Debugger Manual
Explains the features of the OpenVMS Debugger for programmers.

HP OpenVMS Delta/XDelta Debugger Manual
Describes the Delta/XDelta utility used to debug programs that run in privileged
processor mode or at an elevated interrupt priority level.

HP OpenVMS I/O User’s Reference Manual
Contains the information that system programmers need to program I/O
operations using the device drivers that are supplied with the operating system.

HP OpenVMS Linker Utility Manual
Describes how to use the Linker utility to create images that run on OpenVMS
systems. Also explains how to control a link operation with link qualifiers and
link options.

HP OpenVMS MACRO Compiler Porting and User’s Guide
Describes how to port existing VAX MACRO assembly language code to an
OpenVMS Alpha system by using the features of the MACRO-32 compiler. It also
describes how to port existing OpenVMS Alpha code to OpenVMS I64 systems.
Also documents how to use the compiler’s 64-bit addressing support.

Descriptions of OpenVMS Manuals 10–5

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

HP OpenVMS Management Station Overview and Release Notes
Provides an overview and release notes for OpenVMS Management Station
and describes how to get started using the software. OpenVMS Management
Station is a powerful, Microsoft Windows based management tool for system
managers and others who perform user account and printer management tasks
on OpenVMS systems.

OpenVMS Performance Management
Introduces and explains the techniques used to optimize performance on an
OpenVMS system.

Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry
Standard 64 for Integrity Servers
Provides a framework for application developers who are migrating from HP
OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers.

HP OpenVMS Programming Concepts Manual
Describes concepts such as process creation, kernel threads and the kernel
threads process structure, interprocess communication, process control, data
sharing, condition handling, and ASTs. This two-volume manual uses system
services, utility routines, and run-time library (RTL) routines to illustrate
mechanisms for utilizing OpenVMS features.

OpenVMS Record Management Services Reference Manual
Provides reference and usage information for all programmers who use RMS data
files.

OpenVMS Record Management Utilities Reference Manual
Contains descriptive and reference information about the following RMS utilities:

• Analyze/RMS_File utility

• Convert and Convert/Reclaim utilities

• File Definition Language facility

HP OpenVMS RTL General Purpose (OTS$) Manual
Documents the general-purpose routines contained in the OTS$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to I64, Alpha
or VAX, as well as how routines function differently on each system.

HP OpenVMS RTL Library (LIB$) Manual
Documents the general-purpose routines contained in the LIB$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to I64, Alpha
or VAX, as well as how routines function differently on each system.

OpenVMS RTL Screen Management (SMG$) Manual
Documents the screen management routines contained in the SMG$ facility of
the OpenVMS Run-Time Library. Indicates which routines are specific to Alpha
or VAX, as well as how routines function differently on each system.

OpenVMS RTL String Manipulation (STR$) Manual
Documents the string manipulation routines contained in the STR$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to Alpha or
VAX, as well as how routines function differently on each system.

10–6 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.3 Additional Manuals in the OpenVMS Full Documentation Set

OpenVMS System Messages: Companion Guide for Help Message Users
Describes features of the Help Message facility, a tool that you can use to display
message descriptions. Describes the HELP/MESSAGE command and qualifiers
and also includes detailed information about customizing the Help Message
database. Also provides descriptions of messages that can occur when the system
and Help Message are not fully operable.

HP OpenVMS System Services Reference Manual
Presents the set of routines that the operating system uses to control resources,
allow process communication, control I/O, and perform other such operating
system functions. This manual is in two volumes.

OpenVMS Utility Routines Manual
Describes the routines that allow a program to use the callable interface of
selected OpenVMS utilities.

OpenVMS VAX RTL Mathematics (MTH$) Manual
Documents the mathematics routines contained in the MTH$ facility of
the OpenVMS Run-Time Library, which is relevant only to programmers
using OpenVMS VAX. (Alpha programmers should refer to Compaq Portable
Mathematics Library.)

OpenVMS VAX System Dump Analyzer Utility Manual
Explains how to use the System Dump Analyzer utility to investigate system
failures and examine a running OpenVMS VAX system. VAX programmers
should refer to this manual; Alpha and I64 programmers should refer to the
OpenVMS Alpha System Dump Analyzer Utility Manual.

POLYCENTER Software Installation Utility Developer’s Guide
Describes the procedure and provides guidelines for developing software products
that will be installed using the POLYCENTER Software Installation utility.
Intended for developers who are designing installation procedures for software
products layered on the OpenVMS operating system.

VAX MACRO and Instruction Set Reference Manual
Documents both the assembler directives of VAX MACRO and the VAX instruction
set.

HP Volume Shadowing for OpenVMS
Describes how to provide high data availability with phase II volume shadowing.

10.4 RMS Journaling Manual
RMS Journaling for OpenVMS Manual
Describes the three types of RMS Journaling as well as other OpenVMS
components that support RMS Journaling. This manual also describes the
RMS Recovery utility (which is used to recover data saved using journaling), the
transaction processing system services, and system management tasks required
when using RMS Journaling.

Descriptions of OpenVMS Manuals 10–7

Descriptions of OpenVMS Manuals
10.5 Manuals in the OpenVMS I64 OE Extensions Kit

10.5 Manuals in the OpenVMS I64 OE Extensions Kit
The following list contains manuals relevant to the OpenVMS I64 Operating
Environments.

• HP DECwindows Motif for OpenVMS Installation Guide

• HP DECwindows Motif for OpenVMS New Features

• HP DECwindows Motif for OpenVMS Documentation Overview

• HP DECwindows Motif for OpenVMS Management Guide

• HP DECnet-Plus for OpenVMS Installation and Configuration

• HP DECnet-Plus for OpenVMS Introduction and User’s Guide

• HP DECnet-Plus Network Management

• HP DECnet-Plus for OpenVMS DECdts Programming Reference

• HP DECnet-Plus for OpenVMS DECdts Management

• HP DECnet-Plus for OpenVMS DECdns Management

• HP DECnet-Plus for OpenVMS Network Management Quick Reference Guide

• HP DECnet-Plus for OpenVMS OSAK Programming

• HP DECnet-Plus for OpenVMS OSAK Programming Reference

• HP DECnet-Plus for OpenVMS OSAK SPI Programming Reference

• HP DECnet-Plus for OpenVMS Problem Solving Manual

• HP DECnet-Plus for OpenVMS Programming Manual

• HP DECnet-Plus for OpenVMS FTAM and Virtual Terminal User and
Management

• HP DECnet-Plus for OpenVMS Problem Solving

• HP DECnet-Plus for OpenVMS Network Control Language Reference

• HP DECnet-Plus for OpenVMS Planning Guide

• HP TCP/IP Services for OpenVMS Installation and Configuration

• HP TCP/IP Services for OpenVMS Sockets API and System Services
Programming

• HP TCP/IP Services for OpenVMS Concepts and Planning

• HP TCP/IP Services for OpenVMS SNMP Programming Reference

• HP TCP/IP Services for OpenVMS ONC RPC Programming

• HP TCP/IP Services for OpenVMS Tuning and Troubleshooting

• HP TCP/IP Services for OpenVMS Guide to SSH for OpenVMS

• HP TCP/IP Services for OpenVMS Management

• HP TCP/IP Services for OpenVMS Management Command Reference

• HP TCP/IP Services for OpenVMS Management Command Quick Reference
Card

• HP TCP/IP Services for OpenVMS User’s Guide

10–8 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.5 Manuals in the OpenVMS I64 OE Extensions Kit

• HP TCP/IP Services for OpenVMS UNIX Command Equivalents Reference
Card

• HP TCP/IP Services for OpenVMS Guide to IPv6

• HP DECprint Supervisor (DCPS) for OpenVMS User’s Guide

• HP DECprint Supervisor (DCPS) for OpenVMS Software Installation

• HP DECprint Supervisor (DCPS) for OpenVMS Manager’s Guide

• HP DCE for OpenVMS Product Guide

• HP DCE for OpenVMS Reference Guide

• HP DCE for OpenVMS Installation and Configuration Guide

10.6 Archived Manuals
Table 10–1 lists the OpenVMS manuals that have been archived. Note that most
information from the archived manuals has been incorporated in other documents
or online help.

Table 10–1 Archived OpenVMS Manuals

Manual Order Number

A Comparison of System Management on OpenVMS AXP and
OpenVMS VAX

AA-PV71B-TE

Building Dependable Systems: The OpenVMS Approach AA-PV5YB-TE

Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX
Device Driver

AA-R0Y8A-TE

Creating an OpenVMS AXP Step 2 Device Driver from a Step 1
Device Driver

AA-Q28TA-TE

Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS
VAX Device Driver

AA-Q28UA-TE

Guide to OpenVMS AXP Performance Management AA-Q28WA-TE

Guide to OpenVMS Performance Management AA-PV5XA-TE

Migrating an Application from OpenVMS VAX to OpenVMS Alpha AA-KSBKB-TE

Migrating an Environment from OpenVMS VAX to OpenVMS Alpha AA-QSBLA-TE

Migrating to an OpenVMS AXP System: Planning for Migration AA-PV62A-TE

Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications

AA-PV63A-TE

OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features AA-QSBCC-TE

OpenVMS Alpha System Dump Analyzer Utility Manual AA-PV6UC-TE

OpenVMS AXP Device Support: Developer’s Guide AA-Q28SA-TE

OpenVMS AXP Device Support: Reference AA-Q28PA-TE

OpenVMS Bad Block Locator Utility Manual AA-PS69A-TE

OpenVMS Compatibility Between VAX and Alpha AA-PYQ4C-TE

OpenVMS Developer’s Guide to VMSINSTAL AA-PWBXA-TE

OpenVMS DIGITAL Standard Runoff Reference Manual AA-PS6HA-TE

(continued on next page)

Descriptions of OpenVMS Manuals 10–9

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

Table 10–1 (Cont.) Archived OpenVMS Manuals

Manual Order Number

OpenVMS EDT Reference Manual AA-PS6KA-TE

OpenVMS Exchange Utility Manual AA-PS6AA-TE

OpenVMS Glossary AA-PV5UA-TK

OpenVMS Guide to Extended File Specifications AA-REZRB-TE

OpenVMS Master Index AA-QSBSD-TE

OpenVMS National Character Set Utility Manual AA-PS6FA-TE

OpenVMS Obsolete Features Manual AA-PS6JA-TE

OpenVMS Programming Environment Manual AA-PV66B-TK

OpenVMS Programming Interfaces: Calling a System Routine AA-PV68B-TK

OpenVMS RTL DECtalk (DTK$) Manual AA-PS6CA-TE

OpenVMS RTL Parallel Processing (PPL$) Manual AA-PV6JA-TK

OpenVMS Software Overview AA-PVXHB-TE

OpenVMS SUMSLP Utility Manual AA-PS6EA-TE

OpenVMS System Messages and Recovery Procedures Reference
Manual: A–L

AA-PVXKA-TE

OpenVMS System Messages and Recovery Procedures Reference
Manual: M–Z

AA-PVXLA-TE

OpenVMS Terminal Fallback Utility Manual AA-PS6BA-TE

OpenVMS VAX Card Reader, Line Printer, and LPA11–K I/O User’s
Reference Manual

AA-PVXGA-TE

OpenVMS VAX Device Support Manual AA-PWC8A-TE

OpenVMS VAX Device Support Reference Manual AA-PWC9A-TE

OpenVMS VAX Patch Utility Manual AA-PS6DA-TE

OpenVMS Wide Area Network I/O User’s Reference Manual AA-PWC7A-TE

PDP-11 TECO User’s Guide AA-K420B-TC

POLYCENTER Software Installation Utility User’s Guide AA-Q28NA-TK

TCP/IP Networking on OpenVMS Systems AA-QJGDB-TE

Standard TECO Text Editor and Corrector for the VAX, PDP-11,
PDP-10, and PDP-8

Available only on
CD

Table 10–2 lists the networking manuals and installation supplements that have
been archived.

Table 10–2 Archived Networking Manuals and Installation Supplements

Manual Order Number

DECnet for OpenVMS Guide to Networking AA-PV5ZA-TK

DECnet for OpenVMS Network Management Utilities AA-PV61A-TK

DECnet for OpenVMS Networking Manual AA-PV60A-TK

(continued on next page)

10–10 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

Table 10–2 (Cont.) Archived Networking Manuals and Installation Supplements

Manual Order Number

OpenVMS VAX Upgrade and Installation Supplement: VAX 8820,
8830, 8840

AA-PS6MA-TE

OpenVMS VAX Upgrade and Installation Supplement: VAX 8200,
8250, 8300, 8350

AA-PS6PA-TE

OpenVMS VAX Upgrade and Installation Supplement: VAX 8530,
8550, 8810 (8700), and 8820–N (8800)

AA-PS6QA-TE

OpenVMS VAX Upgrade and Installation Supplement: VAX 8600,
8650

AA-PS6UA-TE

VMS Upgrade and Installation Supplement: VAX-11/780, 785 AA-LB29B-TE

VMS Upgrade and Installation Supplement: VAX-11/750 AA-LB30B-TE

Descriptions of the archived OpenVMS manuals are as follows:

A Comparison of System Management on OpenVMS AXP and OpenVMS VAX
Discusses system management tools, the impact of Alpha page sizes on system
management operations, the system directory structure, interoperability issues,
and performance information. Designed for system managers who need to learn
quickly how to manage an OpenVMS Alpha system.

Building Dependable Systems: The OpenVMS Approach
Offers practical information about analyzing the dependability requirements of
your business applications and deciding how to use your computing systems to
support your dependability goals. This information is complemented by technical
summaries of the dependability features of OpenVMS and related hardware and
layered software products.

Creating an OpenVMS Alpha Device Driver from an OpenVMS VAX Device
Driver
Describes the procedures for converting a device driver used on OpenVMS VAX
to a device driver that runs on OpenVMS Alpha. This book also contains data
structures, routines, and macros for maintaining an Alpha driver written in
Macro-32.

Creating an OpenVMS AXP Step 2 Device Driver from a Step 1 Device Driver
Provides information for upgrading a Step 1 device driver (used in earlier versions
of OpenVMS AXP) to a Step 2 device driver. A Step 2 device driver is required for
OpenVMS AXP Version 6.1.

Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS VAX Device
Driver
Provides information for migrating a device driver used on OpenVMS VAX to a
Step 2 device driver used on OpenVMS AXP Version 6.1.

Guide to OpenVMS AXP Performance Management
Introduces and explains the techniques used to optimize performance on an
OpenVMS Alpha system.

Guide to OpenVMS Performance Management
Introduces and explains the techniques used to optimize performance on an
OpenVMS VAX system.

Descriptions of OpenVMS Manuals 10–11

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

Migrating an Application from OpenVMS VAX to OpenVMS Alpha
Describes how to create an OpenVMS Alpha version of an OpenVMS VAX
application. Provides an overview of the VAX to Alpha migration process and
information to help you plan a migration. It discusses the decisions you must
make in planning a migration and the ways to get the information you need to
make those decisions. In addition, this manual describes the migration methods
available so that you can estimate the amount of work required for each method
and select the method best suited to a given application.

Migrating an Environment from OpenVMS VAX to OpenVMS Alpha
Describes how to migrate a computing environment from an OpenVMS VAX
system to an OpenVMS Alpha system or a mixed-architecture cluster. Provides
an overview of the VAX to Alpha migration process and describes the differences
in system and network management on VAX and Alpha computers.

Migrating to an OpenVMS AXP System: Planning for Migration
Describes the general characteristics of RISC architectures, compares the Alpha
architecture to the VAX architecture, and presents an overview of the migration
process and a summary of migration tools provided by HP. The information in
this manual is intended to help you define the optimal migration strategy for
your application.

Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications
Provides detailed technical information for programmers who must migrate
high-level language applications to OpenVMS Alpha. Describes how to set
up a development environment to facilitate the migration of applications,
helps programmers identify application dependencies on elements of the
VAX architecture, and introduces compiler features that help resolve these
dependencies. Individual sections of this manual discuss specific application
dependencies on VAX architectural features, data porting issues (such as
alignment concerns), and the process of migrating VAX shareable images.

OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features
Introduces and describes OpenVMS Alpha operating system support for 64-bit
virtual addressing and Very Large Memory (VLM). Intended for system and
application programmers, this guide highlights the features and benefits of
OpenVMS Alpha 64-bit and VLM capabilities. It also describes how to use these
features to enhance application programs to support 64-bit addresses and to
efficiently harness very large physical memory.

OpenVMS Alpha System Dump Analyzer Utility Manual
Explains how to use the System Dump Analyzer utility to investigate system
failures and examine a running OpenVMS Alpha system. Alpha programmers
should refer to this manual; VAX programmers should refer to the OpenVMS VAX
System Dump Analyzer Utility Manual.

OpenVMS AXP Device Support: Developer’s Guide
Describes how to write a driver for OpenVMS Alpha for a device not supplied by
Compaq.

OpenVMS AXP Device Support: Reference
Provides the reference material for the Writing OpenVMS Alpha Device Drivers
in C by describing the data structures, macros, and routines used in device-driver
programming.

10–12 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

OpenVMS Bad Block Locator Utility Manual
Describes how to use the Bad Block Locator utility to locate bad blocks on older
types of media.

OpenVMS Compatibility Between VAX and Alpha
Compares and contrasts OpenVMS on VAX and Alpha computers, focusing on the
features provided to end users, system managers, and programmers.

OpenVMS Developer’s Guide to VMSINSTAL
Describes the VMSINSTAL command procedure and provides guidelines for
designing installation procedures that conform to standards recommended by
Compaq. Intended for developers who are designing installation procedures for
software products layered on the OpenVMS operating system.

OpenVMS DIGITAL Standard Runoff Reference Manual
Describes the DSR text-formatting utility.

OpenVMS EDT Reference Manual
Contains complete reference information for the EDT editor.

OpenVMS Exchange Utility Manual
Describes how to use the Exchange utility to transfer files between some foreign
format volumes and OpenVMS native volumes.

OpenVMS Glossary
Defines terms specific to OpenVMS that are used throughout the documentation.

OpenVMS Guide to Extended File Specifications
Provides an overview of Extended File Specifications and describes the overall
differences and impact Extended File Specifications introduce to the OpenVMS
environment.

OpenVMS Master Index
Offers an edited compilation of indexes from the manuals in the OpenVMS Full
Documentation set.

OpenVMS National Character Set Utility Manual
Describes how to use the National character set utility to build NCS definition
files.

OpenVMS Obsolete Features Manual
Presents the DCL commands, system services, RTL routines, and utilities made
obsolete by VMS Version 4.0 through Version 5.0. Includes an appendix of DCL
commands, RTL routines, and utilities eliminated from VMS Version 4.0.

OpenVMS Programming Environment Manual
Provides a general description of Compaq products and tools that define the
programming environment. Introduces facilities and tools such as the compilers,
the linker, the debugger, the System Dump Analyzer, system services, and routine
libraries.

OpenVMS Programming Interfaces: Calling a System Routine
Describes the OpenVMS programming interface and defines the standard
conventions to call an OpenVMS system routine from a user procedure. The
Alpha and VAX data type implementations for various high-level languages are
also presented in this manual.

Descriptions of OpenVMS Manuals 10–13

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

OpenVMS RTL DECtalk (DTK$) Manual
Documents the DECtalk support routines contained in the DTK$ facility of the
OpenVMS Run-Time Library.

OpenVMS RTL Parallel Processing (PPL$) Manual
Documents the parallel-processing routines contained in the PPL$ facility of the
OpenVMS Run-Time Library. Indicates which routines are specific to Alpha or
VAX, as well as how routines function differently on each system.

OpenVMS Software Overview
Provides an overview of the OpenVMS operating system and some of its available
products.

OpenVMS SUMSLP Utility Manual
Describes how to use the SUMSLP batch-oriented editor to update source files.

OpenVMS System Messages and Recovery Procedures Reference Manual
Contains an alphabetical listing of the errors, warnings, and informational
messages issued by the operating system. Also provides the meaning of each
message and a statement of the action to be taken in response to each message.
This manual is in two volumes.

OpenVMS Terminal Fallback Utility Manual
Describes how to use the Terminal Fallback utility to manage the libraries,
character conversion tables, and terminal parameters that are available within
this utility.

OpenVMS VAX Card Reader, Line Printer, and LPA11–K I/O User’s Reference
Manual
Describes the card reader, laboratory peripheral accelerator, and line printer
drivers on OpenVMS VAX.

OpenVMS VAX Device Support Manual
Describes how to write an OpenVMS VAX driver for a device not supplied by
Compaq.

OpenVMS VAX Device Support Reference Manual
Provides the reference material for the OpenVMS VAX Device Support Manual
by describing the data structures, macros, and routines used in device-driver
programming.

OpenVMS VAX Patch Utility Manual
Describes how to use the Patch utility to examine and modify executable and
shareable OpenVMS VAX images.

OpenVMS Wide Area Network I/O User’s Reference Manual
Describes the DMC11/DMR11, DMP11 and DMF32, DR11-W and DRV11-WA,
DR32, and asynchronous DDCMP interface drivers on OpenVMS VAX.

PDP–11 TECO User’s Guide
Describes the operating procedures for the PDP-11 TECO (Text Editor and
Corrector) program.

POLYCENTER Software Installation Utility User’s Guide
Provides information on the POLYCENTER Software Installation utility, a
new component that lets you install and manage software products that are
compatible with the utility.

10–14 Descriptions of OpenVMS Manuals

Descriptions of OpenVMS Manuals
10.6 Archived Manuals

TCP/IP Networking on OpenVMS Systems
Provides an introductory overview of TCP/IP networking and describes OpenVMS
DCL support for TCP/IP capabilities.

Descriptions of OpenVMS Manuals 10–15

Index

A
AES, 5–3
Analyze utility, 4–1
ATI RADEON graphics, 5–1

B
Based clusters, 7–4
Binary translator, 4–35

C
CDSA, 5–1
Checksum utility, 4–1

enhanced for I64 objects, 4–2
Clusters, 3–1
Commands

SDA, 3–8
SET, 4–36
SHOW, 4–36

C Run-Time Library (RTL) enhancements, 4–2

D
DCE RPC, 4–4
DCL command enhancements, 2–1
Debugger, 4–4

Intel Itanium architecture support, 4–4
supported Intel Itanium hardware registers,

4–4
supported languages, 4–5

Device drivers
debugging, 10–5
supplied with OpenVMS, 10–5
writing, 10–4

E
ELF type

STB_VMS_WEAK, 4–34
STB_WEAK, 4–34

Elliptic curve cryptography, 5–4
Encryption type, 5–1
Enterprise Operating Environment, 2–3

ERLBUFFERPAG_S2 parameter, 3–10
ERRORLOGBUFF_S2 parameter, 3–10
Executable and Linkable Format (ELF), 4–34
Extended Lock Value Block, 4–5

F
Fibre Channel HBA support, 3–7
Foundation Operating Environement, 2–3

H
HBMM

See Volume Shadowing for OpenVMS
HELP/MESSAGE facility, 9–7
HELP command, 9–7
Host-Based Minimerge (HBMM), 3–12
HP Secure Web Browser for OpenVMS Alpha, 9–6

I
Initialized overlaid program sections, 7–4

K
Kerberos, 5–2
ktutil, 5–2

L
LBR$DELETE_DATA library routine, 4–16
LBR$DELETE_KEY library routine, 4–18
LBR$GET_INDEX library routine, 4–20
LBR$INSERT_KEY library routine, 4–23
LBR$LOOKUP_KEY library routine, 4–25
LBR$LOOKUP_TYPE library routine, 4–10
LBR$MAP_MODULE library routine, 4–12
LBR$PUT_MODULE library routine, 4–13
LBR$PUT_RECORD library routine, 4–27
LBR$REPLACE_KEY library routine, 4–29
LBR$SEARCH library routine, 4–31
LBR$UNMAP_MODULE library routine, 4–14
LBR library services, 4–13
Lexical function enhancements, 2–1
Librarian utility, 4–5

changes to (I64 only), 4–6
defaults, 4–6
enhanced /REMOVE, 4–7

Index–1

Librarian utility (cont’d)
format changes, 4–34
new group section symbols, 4–35
new UNIX-style weak symbols, 4–34
precedence ordering rules, 4–35
usage summary, 4–6
use of /ALPHA and /VAX qualifiers, 4–7
V6.0 library index format, 4–34

Library index format
V6.0 libraries, 4–34

Library routines
accessing ELF object libraries, 4–8
changes to, 4–7
extended, 4–15
LBR$DELETE_DATA, 4–16
LBR$DELETE_KEY, 4–18
LBR$GET_INDEX, 4–20
LBR$INSERT_KEY, 4–23
LBR$LOOKUP_KEY, 4–25
LBR$LOOKUP_TYPE, 4–10
LBR$MAP_MODULE, 4–12
LBR$PUT_MODULE, 4–13
LBR$PUT_RECORD, 4–27
LBR$REPLACE_KEY, 4–29
LBR$SEARCH, 4–31
LBR$UNMAP_MODULE, 4–14
new, 4–9
new library types, 4–7

License Management Facility, 2–2
Linker

conventions for image names, 7–18
for OpenVMS Alpha

hangs when processing many files, 7–19
RMS_RELATED_CONTEXT option, 7–19

for OpenVMS I64
alignments for PSECT_ATTRIBUTE option,

7–19
flags set for /TRACEBACK, /DEBUG, /DSF,

7–8
handling initialized overlaid psects, 7–4
linking ELF common symbols selectively

against sharable images, 7–7
images compiled with reduced floating point,

7–12
linker map, 7–21
linking with ELF group symbols, 7–12
linking with UNIX-style weak symbols, 7–12
on I64 systems, 7–9
options, 7–17
program section synopsis, 7–5
restrictions for /SEGMENT_ATTRIBUTE, 7–14
understanding messages, 7–10
utility, 7–1

Linking on OpenVMS I64 systems, 7–2
LMF, 2–2
Lock management

Extended Lock Value Block, 4–5

Logging
SSL, 3–8
system service, 3–8

Lowercase symbol names, 4–36

M
Merge and copy operations

prioritizing, 3–12
Migration software, 4–35
Mission Critical Operating Environment, 2–3
Monitor utility, 2–3
Mozilla, 9–6

N
Networking products, 5–5
New Features

Debugger, 4–4
XDELTA, 4–46

New Linker qualifiers, 7–2

O
OCSP, 5–3
OpenSSL, 5–3
OpenVMS I64 Boot Manager, 3–1
Operating environments, 2–3

P
Patch utility, 4–41
POSIX Threads, 4–36
PSECT_ATTRIBUTE options, 7–17

R
RESET_THRESHOLD policy keyword, 3–12
RTL LIB routines, 4–39

LIB$CVTS_FROM_INTERNAL_TIME, 4–39
LIB$EMODS, 4–39
LIB$EMODT, 4–39
LIB$GET_UIB_INFO, 4–39
LIB$I64_CREATE_INVO_CONTEXT, 4–39
LIB$I64_FREE_INVO_CONTEXT, 4–39
LIB$I64_GET_CURR_INVO_CONTEXT, 4–39
LIB$I64_GET_CURR_INVO_HANDLE, 4–39
LIB$I64_GET_FR, 4–39
LIB$I64_GET_GR, 4–39
LIB$I64_GET_INVO_CONTEXT, 4–39
LIB$I64_GET_PREV_INVO_CONTEXT, 4–39
LIB$I64_GET_PREV_INVO_HANDLE, 4–39
LIB$I64_GET_UNWIND_HANDLER_FV, 4–39
LIB$I64_GET_UNWIND_LSDA, 4–39
LIB$I64_GET_UNWIND_OSSD, 4–39
LIB$I64_INIT_INVO_CONTEXT, 4–39
LIB$I64_INVO_HANDLE, 4–39
LIB$I64_IS_AST_DISPATCH_FRAME, 4–39

Index–2

RTL LIB routines (cont’d)
LIB$I64_IS_EXC_DISPATCH_FRAME, 4–39
LIB$I64_PREV_INVO_END, 4–40
LIB$I64_PUT_INVO_REGISTERS, 4–40
LIB$I64_SET_FR, 4–40
LIB$I64_SET_GR, 4–40
LIB$I64_SET_PC, 4–40
LIB$LOCK_IMAGE, 4–40
LIB$MULTS_DELTA_TIME, 4–40
LIB$POLYS, 4–40
LIB$POLYT, 4–40
LIB$UNLOCK_IMAGE, 4–40

RTL OTS routines, 4–40
OTS$CNVOUT_S, 4–40
OTS$CNVOUT_T, 4–40
OTS$CVT_T_S, 4–40
OTS$CVT_T_T, 4–40
OTS$DIVCS_R3, 4–40
OTS$DIVCT_R3, 4–40
OTS$MULCT_R3, 4–40
OTS$POWCSCS_R3, 4–41
OTS$POWCSCT_R3, 4–41
OTS$POWCSJ, 4–41
OTS$POWCTJ, 4–41
OTS$POWSJ, 4–41
OTS$POWSLU, 4–41
OTS$POWSS, 4–41
OTS$POWTJ, 4–41
OTS$POWTLU, 4–41
OTS$POWTT, 4–41

S
SCSI_ERROR_POLL parameter, 3–10
SDA commands, 3–8
SET command, 4–36
SET SHADOW command

/EVALUATE=RESOURCES, 3–12
/PRIORITY, 3–12

SHADOW_ENABLE parameter, 3–10
SHADOW_HBMM_RTC parameter, 3–10, 3–12
SHADOW_MAX_COPY parameter, 3–12
SHADOW_PSM_DLY parameter, 3–10
SHADOW_REC_DLY parameter, 3–11, 3–13
SHADOW_SITE_ID parameter, 3–11
SHOW command, 4–36
SSL, 5–3

System Service Logging, 3–8
Symbol definiton

OpenVMS-style weak, 4–34
Unix-style weak, 4–34

SYSSER_LOGGING parameter, 3–11
System parameters

ERLBUFFERPAG_S2, 3–10
ERRORLOGBUFF_S2, 3–10
new in Version 8.2, 3–9
SCSI_ERROR_POLL, 3–10
SHADOW_ENABLE, 3–10

System parameters (cont’d)
SHADOW_HBMM_RTC, 3–10, 3–12
SHADOW_MAX_COPY, 3–12
SHADOW_PSM_DLY, 3–10
SHADOW_REC_DLY, 3–11, 3–13
SHADOW_SITE_ID, 3–11
SYSSER_LOGGING, 3–11
TTY_DEFCHAR3, 3–11
VHPT_SIZE, 3–11

System Service Logging, 3–8
System services, 4–41

T
TCP/IP Services for OpenVMS, 5–5
Time zones, 3–12, 4–44
Traceback, 4–44
TTY_DEFCHAR3 parameter, 3–11

U
Ultra-SCSI HBA adapter support, 3–8
UNIX-style weak symbols, 4–34

V
VHPT_SIZE parameter, 3–11
Volume Shadowing for OpenVMS

HBMM, 3–12
prioritizing merge and copy operations, 3–12

W
Web browser, 9–6

X
XDELTA

new features, 4–46

Index–3

